
SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS

ARIC CUTULI, HAROLD HAODONG MIAO, AND WEITAO ZHU

Abstract. Feedforward neural networks have achieved a stunning record of performing highly

complex computational tasks, especially with its recent surge of applications. However, the the-

oretical understanding of these networks’ computational prowess has been lacking, even in the

simplest case of classification tasks. A recent result of [GS22] shows through a geometric analysis

that with sufficient width, a one-layer randomly initialized neural network can transform two sets

into two linearly separable sets with high probability, without necessitating parameter training.

Building upon this result, this current project further explores the impact of width and depth on

the separation capacity of randomly initialized neural networks. Our experimental analysis shows

that for randomly initialized neural networks with standard Gaussian weights and uniform biases

symmetric about 0, increasing depth does not necessarily improve linear separability for a given

width. We explore the impact that different parameter distributions and activation functions have

on a neural network’s linear separability, which sheds light onto hypothetical results of a fully

trained architecture and onto the utility that rectifier networks have in this particular problem.

1. Introduction

In this project, we focus on the separation capacity of feedforward neural networks, which is the

ability of neural networks to cleanly separate datasets into two classes that are separated in space by

a margin. We formally define this concept with respect to datasets and neural networks below. We

run experiments with networks of varying width, depth, hyperparameters, and activation functions

and discuss the implications of those results.

Our experiments are conducted using randomly initialized neural networks (RINNs). Examining

the experimental performance of RINNs consists of running a forward pass over many architectures

of randomly sampled weight matrices and bias vectors. Effectively, this allows trials to span over

the space of architectures, sidestep the added computation cost of fully training the neural network,

and avoid potential black box results achieved via backpropagation. Despite much experimental

effectiveness of this approach, a theoretical justification for its success in classification tasks has

not been extensively explored until recently [GS22, DS21]. This study investigates this justification

but focuses primarily on the separation of datasets using RINNs and on providing deeper insights

through further experimentation.

1.1. Problem Statement. Prior to formally discussing the problem, we introduce the following

definitions.

Definition 1.1. Two bounded, possibly infinite sets X+, X− ⊂ Rd are δ-separated if

||x+ − x−|| ≥ δ for all x+ ∈ X+ and x− ∈ X−.

1

2 A. CUTULI, H. MIAO, AND W. ZHU

Definition 1.2. Let F : Rd → Rn denote the function defined by a feedforward neural network.

F (X+) and F (X−) are linearly separable if there exists a and c such that

aTx+ c =

> 0 if x ∈ X+

< 0 if x ∈ X−

with the margin of separation defined as infx{|aTx+ c|/∥a∥}.

Our problem can now be phrased as follows.

Problem 1.3. Given two bounded and δ-separated data sets X+, X− ⊂ Rd, is there a neural

network F such that F (X+) and F (X−) are linearly separable?

The answer to the above problem is affirmative. Recently, [GS22] has proved the following

results, which our experimental work centers around. Define the mutual complexity of any two

finite sets X+ and X− by the total number of points N = |X+| + |X−|. For two arbitrary sets

X+, X− ⊂ RBd
2, mutual complexity is indexed by parameters (δ, µ) where δ is the separation and

µ is the mutual metric entropy of the two sets [Ver18, Section 7]. The following definition is from

[GS22, DS21].

Definition 1.4. [GS22, Definition 1.2] For any n ∈ N, let [n] := {1, 2, . . . , n}. Let X−, X+ ⊂ RBd
2

be two δ-separated sets. Suppose there exist two finite sets of centers C+ = {c+i }N
+

i=1 ⊂ Rd
2 and

C− = {c−i }N
−

i=1 ⊂ Rd, and two sets of constants r+1 , r
+
2 , . . . , r

+
N+ , r

−
1 , r

−
2 , . . . , r

−
N− ≥ 0 of radii such

that

(1) X+ ⊂
⋃N+

i=1X
+
i and X− ⊂

⋃N−

j=1X
−
j where X+

i := X+ ∩ Bd
2(c

+
i , r

+
i) and X−

j := X− ∩
Bd
2(c

−
j , r

−
j) satisfies c

+
i ∈ conv(X+

i) and c−j ∈ conv(X−
j) for all i ∈ [N+], j ∈ [N−].

(2) r+i ≤ µ−1 dist2
(
c+i , C

−) for i ∈ [N+], and r−j ≤ µ−1 dist2
(
c−j , C

+
)
for j ∈ [N−],a

(3) C+ and C− are δ-separated.

Then, we say X− and X+ have (δ, µ)-mutual complexity N , where N = N− +N+.

Their first result states that for any two arbitrary sets satisfying Definition 1.4, we can find a

linearly separable neural network.

Theorem 1.5. [GS22, Theorem 2.4] Let X+, X− ⊂ RBd
2 be any two δ-separated sets and k as

defined as

k := C

(
32R

δ2

)2 (
w2((X+ −X−) ∪X+ ∪X−) +R2

)
. (1.1)

For any parameter γ ∈ [0,max δ2/8Rd, δ2/18R
√
k], let N be the (δ, 8R2/γ)-mutual complexity of

X+ and X− and let centers C+ and C− be as guaranteed by Definition 1.4. Then there ex-

ists a neural network Φ such that Φ(X+) and Φ(X−) are linearly separable with margin at least√
NM(γ/2, N) whereM is as in Definition 1.2.

In addition, the previous deterministic result can be further upgraded to a probabilistic statement

for randomly initialized neural networks. To state the second result, we define the Gaussian width

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 3

w(T) of a subset T ⊂ Rn ([Ver18, Definition 7.5.1]) as

w(T) := E
[
sup
x∈T

gTx
]
, where g ∼ N(0, In×n). (1.2)

Theorem 1.6. [GS22, Theorem 1.4] Let X+, X− ⊂ RBd
2 be δ-separated sets with d ≥ 2. There

exists a constant C > 0 depending only on δ and R such that the following holds. Define the mutual

complexity parameter N := |X+|+ |X−| and the separation parameter γ := δ2/18R
√
k if X+ and

X− are finite where

k := C

(
32R

δ2

)2 (
w2((X+ −X−) ∪X+ ∪X−) +R2

)
. (1.3)

Otherwise N is the (δ, 144δ−2R3
√
k)-mutual complexity and γ := δ2/36R

√
k.

Consider a one-layer ReLU-activated RINN Φ(x) = ReLU(Wx + b) with standard Gaussian

weights W ∼ N(0, In×d) and bias b ∼ Unif ([−λ, λ]n) for maximal bias λ ≥ 9R
√
k/8. Then, for

any η ∈ (0, 1), the sets Φ(X+),Φ(X−) ⊂ Rn are linearly separable with probability at least 1 − η

by a margin at leastM(γ,N) defined in Definition 1.2 provided that width n satisfies the following

condition

n ≥ log(N/η)

q
, where q :=

R

4λ
√
k

(
2δ2

81R2

)k

. (1.4)

1.2. Expressivity of Neural Networks. Expressivity in neural networks refers to the ability

of a neural network to approximate a wide variety of functions or mappings between input and

output data. Specifically, a neural network is said to be expressive if it can represent a broad class

of nonlinear functions or decision boundaries that can fit the training data accurately.

Expressivity is an important property of neural networks, as it determines the complexity and

diversity of the functions that the network can learn to represent. Highly expressive neural networks

can learn to model complex, high-dimensional data such as images, audio, and text, while less

expressive networks may struggle to capture the underlying patterns in the data.

The expressivity of a neural network is determined by its architecture, which includes the number

of layers, the number of neurons per layer, the activation functions used, and the connections

between neurons. In general, larger and deeper neural networks with more complex activation

functions and more connections are more expressive than smaller and shallower networks [GC16,

Chapter 6].

Our report is related to this property of neural networks, as finding an architecture that is linearly

separable boils down to finding a parameterization that approximates a hyperplane separating the

data into the two classes.

1.3. Overview. Here we give a brief overview of the rest of the paper. In Section 2, we introduce

a number of notations and break down the mathematics behind the results in Theorems 2.5 and

1.6. With these results as our theoretical underpinning, we include our experimental analysis in

Section 3. The subsections there contain the outcomes of our tests on the impact of depth, width,

bias, activation functions and random initialization. Finally, we conclude our report in section 4

and expand on directions for further experiments.

4 A. CUTULI, H. MIAO, AND W. ZHU

2. The geometry of linear separation

In this section, we explain the mathematics behind the linear separability of one-layer neural

networks in [GS22] and break down the proofs of Theorems 2.5 and 1.6.

2.1. General Setup for Linear Separation with ReLU Activation Function.

2.1.1. ReLU Activation Function. The popular ReLU activation function from R to R for a single

dimension is defined as ReLU(x) = x1x>0, and we employ the multiple dimension ReLU activation

function from Rn to Rn by applying ReLU dimension wise on the input n dimension data.

2.1.2. Neural Network as Function. We refer to a neural network by the function it represents.

In our discussion, a one-layer neural network with ReLU activation function is defined as Φ(x) =

ReLU(Wx+b), where Φ : Rd → Rn, W ∈ Rn×d is the weight matrix, and b ∈ Rn is the bias. A two-

layer neural network with ReLU activation function is defined as Φ̃(Φ(x)) = ReLU(W (ReLU(W ∗+

b∗)) + b). Here W and W ∗ and similarly b and b∗ are assumed to be independent. However, in

Section 3.3, we set them to be the same to compare the impact of different weight matrices and

biases on the linear separability of one-layer neural networks.

2.2. Key Geometric Insight Behind ReLU Activation Function. One important ingredi-

ent of the proof is the geometric property of the ReLU function, which selectively preserves the

Euclidean distance encoded by the input depending on its signage. Recall that the i-th node of

a neural network Φ encodes the i-th row Wi of the weight matrix W and the i-th entry bi of

b, i.e., (Φ(x))i = ReLU(W T
i x + bi). For any x ∈ Rn, assuming that Wi ∈ Sd−1 is normalized,

hi(x) = W T
i x+ bi equals the signed distance between x and the hyperplane hi = 0. Thus, (Φ(x))i

measures the distance between x and hi if x is on the positive side of hi and is zero otherwise. In

our proof, this property of the ReLU function helps us differentiate data points with different signs.

More specifically, we denote X+ and X− as the two sets of points with different labels. Under

this setup, by Definition 1.2, to show that the neural network Φ linearly separates the points in

X+ and X−, it suffices to find a vector (or matrix) a⃗ such that a⃗TΦ(x+) > 0 and a⃗TΦ(x−) < 0

for every x+ ∈ X+ and every x− ∈ X−. The key idea is to understand which of the coordinates

of Φ(x+) for x+ ∈ X+ are strictly positive, and which of the coordinates of Φ(x−) for x- ∈ X- are

strictly negative and to select the weight matrix a⃗ accordingly to achieve this property. In fact, it is

sufficient to construct a weight vector such that a subset of the coordinates are linearly separable,

which is encoded in the following lemma.

Lemma 2.1. [GS22] For S+, S− ⊂ Rk and any projection π onto a subspace indexed by coordinates

Σ ⊂ {1, . . . , k}, if π(S+) and π(S−) are linearly separable with margin µ, then so are S+ and S−.

To build up the proof for linear separability for sets with arbitrary mutual complexity, we start

from the case of finite sets.

2.3. A One-Layer Deterministic neural network Separates Finite Sets. We first give the

deterministic NN analogs of the finite set cases of Theorem 1.6 with an algorithm, which constructs

the one-layer deterministic neural networks through separating points xi one by one in descending

order of norm with hyperplanes hi. For each point xi, we select a hyperplane hi such that xi and

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 5

all points in the other class set with smaller norms are on different sides of hi each with distance

at least γ. Then, when we ReLU-activate the one-layer neural network Φ with hi as the i-th node,

(Φ(xi))i = hi(xi) > 0 and for any point x in the other set with smaller magnitude, (Φ(x))i = 0 as

hi(x) ≤ 0. More specially, the algorithm is as follows. Recall k from (1.3) and N := |X+| + |X−|
and define sign σ : X+ ∪X− → {+1,−1} by

σ(x) = +1 if x ∈ X+, and σ(x) = −1 if x ∈ X−. (2.1)

Algorithm 1 To construct a one-layer neural network separating two finite sets with a margin

[GS22, Algorithm 1]

Input: Two δ-separated finite sets X+, X− ⊂ RBd
2 and γ ∈ [0,max(δ2/8Rd, δ2/18R

√
k)].

Output: A one-layer neural network Φ such that Φ(X+) and Φ(X−) are linearly separable.

1: for i = 1, 2, . . . , N do

2: xi ← x where x has the i-th largest norm in X+ ∪X−.

3: end for

4: for i = 1, 2, . . . , N do

5: Find w ∈ Sd−1 and b ∈ R such that wTxi + b ≥ γ and wTxj + b ≤ −γ for all j with j > i

and σ(xi) ̸= σ(xj). If no such j exists, ask wTxi + b ≥ γ and wTx+ b ≤ 0 for some x ∈ RBd
2.

6: wi ← w, bi ← b, hi ← the function wT
i x+ bi

7: end for

8: W ← the matrix with row vectors wT
i

9: b← the vector with components bi

10: return the function Φ(x) = ReLU(Wx+ b)

In particular, the existence of hi in line 6 of the algorithm is established via a probabilistic

argument in Theorem 2.2 in [GS22] for γ satisfying the requirement of the input.

Theorem 2.2. [GS22, Theorem 2.2] For any two δ-separated finite sets X+, X− ⊂ RBd
2, define

xi and σ as in Algorithm 1 and (2.1). Consider the random affine function h(z) = vT z + t where

t ∈ R, v ∈ Rd are independent random variables, t ∼ Unif ([−λ, λ]), and the distribution of v is

specified below. For any γ > 0, let

Bi := {h(xi) ≥ γ} ∩
⋂

j:j>i,σ(xi) ̸=σ(xj)

{h(xj) ≤ −γ} .

for each i ∈ {1, 2, . . . , N}. Let p := R
8(d−1)λ(

δ
8R2)

d and recall q from (1.4). There exists a constant

C depend only on δ and R in the definition (1.3) of k such that the following statements hold.

(1) For all i and γ ≤ δ2/8Rd, P(Bi) ≥ p if v ∼ Unif
(
Sd−1

)
and λ ≥ R.

(2) For all i and γ ≤ δ2/8Rd, P(Bi) ≥ p/10 if v ∼ N(0, Id) and λ ≥ 3R
√
d.

(3) For all i and γ ≤ δ2/18R
√
k, P(Bi) ≥ q if v ∼ N(0, Id) and λ ≥ 9R

√
k/8.

The details of the proof of this theorem can be found in the Appendix of [GS22]. For now,

assuming its validity and thereby the existence of the hyperplanes hi, we apply the ReLU activation

6 A. CUTULI, H. MIAO, AND W. ZHU

function to the hyperplanes with our neural network. The outcome is that

(Φ(xi))j

= ReLU(hj(xi)) ≥ γ if x ∈ X+

= 0 if σ(xj) ̸= σ(xi), j < i

≥ 0 otherwise.

This property allows us to find a deterministic hyperplaneH(z) := a⃗T (z) =
∑N

i=1 aizi that separates

Φ(X+) and Φ(X−) with desired margins by choosing ai := σ(xi)
(
1 +

∣∣∣∑N
j=i+1 aj(Φ(xi))j

∣∣∣) /γ

recursively for i = N, . . . , 1 (Algorithm 2 in [GS22]). This choice of a⃗ gives us that

σ(xi)H(Φ(xi)) ≥ 1

for all i after splitting H(Φ(xi)) into 4 different sums involving xi, j < i, σ(xi)¬σ(xi) and j <

i, σ(xi) = σ(xi) and j > i and using triangle inequality and leads to the following theorem.

Theorem 2.3. [GS22, Theorem 2.3] For output Φ of Algorithm 1 on any sets X+, X− and pa-

rameter γ satisfying the input conditions, Φ(X+) and Φ(X−) are linearly separable with margin at

least
√
NM(γ,N) whereM(γ,N) :=

√
4R(R+λ)

N(1+2R/λ)2N−N
.

0

xi

xi+3

xi+2

xi−1

xi+1
xi+4

∥xi∥ Bd
2 Bd

2(xi, δ)
x1

x2

h1 = h2

x3
x4

x5

x6

h3 h4

h5

h6

Figure 1. [GS22, Figure 1] Illustration of Algorithm 1 and Theorem 2.3.
Given input sets X+ and X−, let xi be the point with the i-th largest norm. The left
picture illustrates how Algorithm 1 picks each hi. See the proof sketch of Theorem
2.3. The right picture is a concrete example of this on a input with 6 points.

Remark 2.4. The above proof also suggests that other activation functions with similar properties,

i.e. distinguishing between signage and preserving Euclidean distance for positive distance, could

potentially achieve similar separability. We examined this idea experimentally in Section 3.5.

2.4. Generalizations to Arbitrary Sets and Random Initialization. Next up, we generalize

Theorem 2.3 to arbitrary sets X+ and X− which may not be finite. By carefully varying mar-

gin parameter γ and mutual complexity parameters, the next theorem shows that the output of

Algorithm 1 separates the entire sets X+ and X− if it separates the centers in Definition 1.4.

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 7

Theorem 2.5. [GS22, Theorem 2.4] Let X+, X− ⊂ RBd
2 be any two δ-separated sets and k as

defined in (1.3). For any parameter γ ∈ [0,max(δ2/8Rd, δ2/18R
√
k)], let N be the (δ, 8R2/γ)-

mutual complexity of X+ and X− and let centers C+ and C− be as guaranteed by Definition 1.4.

Then

(1) The centers C+ and C− with parameter γ satisfy the input conditions of Algorithm 1.

(2) Let Φ be the output of Algorithm 1 on C+ and C− with parameter γ. Then, Φ(X+) and

Φ(X−) are linearly separable with margin at least
√
NM(γ/2, N) whereM is as in (??).

Proof of the above theorem follows from the proof of Theorem 2.3 applying to the centers C+

and C− and Definition 1.4, which controls the closeness of the clusters of points to the centers.

The details of the proof can be found in the Appendix of [GS22] and this result sets us up for the

main result in Theorem 1.6, which generalizes Theorem 2.3 to one-layer RINN Φ.

Invoking Lemma 2.1, for Theorem 1.6, it suffices to show that with sufficient width, for every i,

there exists a node in Φ that satisfies the conditions for hi in Algorithm 1 with high probability.

Collectively, by Lemma 2.1, these nodes make X+ and X− separable, which will be enough for Φ

to also make them separable. Crucially, this means that

(1) we need to find a random node that satisfies the condition for each hi with high probability,

which is precisely Theorem 2.2;

(2) the remaining hyperplanes do not hurt separation, which is the content of Lemma 2.1.

Based on the above analysis, we sketch our main result (Theorem 1.6) that a one-layer RINN

separates sets with high probability.

Proof Sketch of Theorem 1.6. We first prove the theorem for finite X+ and X− before generalizing

to arbitrary sets.

In the finite X+, X− case, let Bℓ
i , 1 ≤ i ≤ N , 1 ≤ ℓ ≤ n denote the event that the ℓ-th random

hyperplane Hℓ of Φ satisfies the condition for hi on line 5 of Algorithm 1.

Claim: Φ(X+) and Φ(X−) are separable with the desired margin if, for every i, Bℓ
i holds for

some ℓ.

Assuming the claim, we can find some hyperplanes in Φ that form an output of Algorithm 1 on

X+, X−, and γ and show that these hyperplanes makeX+ andX− separable via a similar argument

as Theorem 2.3. By Lemma 2.1, Φ makes X+ and X− separable with the desired margin, thus

proving the claim. The case that the same Hℓ may satisfy the conditions of multiple hi is addressed

in the Appendix of [GS22], which shrinks the separation margin by a factor of
√
N compared to

Theorems 2.3 and 2.5. The remaining task is to bound P((∀i)(∃ℓ)Bℓ
i). By Theorem 2.2, for all i

and ℓ, P(Bℓ
i) ≥ p/10 or q depending on the γ when j exists on line 5 of Algorithm 1. The case when

no such j exists is addressed in the Appendix of [GS22]. By a union bound over i and independence

of ℓ

P(Φ(X+),Φ(X−) are separable) ≥ P
(
(∀i)(∃ℓ)Bℓ

i

)
≥ 1−

N∑
i=1

P
(
(∀ℓ)(Bℓ

i)
C
)
≥ 1−N(1− q)n

which is at least 1− η if n ≥ log(N/η)/q.

8 A. CUTULI, H. MIAO, AND W. ZHU

For arbitrary sets X+ and X−, let Bℓ
i be the same event based on the centers C+ and C−

as guaranteed by Definition 1.4. Then, the argument above combined with Theorem 2.5 follows

similarly. □

3. Experimental results

We have reproduced the experimental results from [GS22] , and further extended the experiment

in the setting of deeper networks, wider networks, networks with changing biases, networks with

skewed supports, and networks with different activation functions. In general, we conclude that for

a simpler synthetic data set like ours, the randomly-initialised one-layer neural network performs

the best in terms of high separation percentage, but with skewed supports for the bias vector,

deeper networks tend to outperform shallower networks. However, as the complexity of the data

sets increases, the picture could look dramatically different.

3.1. Experimental Setup. Unless stated otherwise, our experimental results are obtained by

running many (1000+) trials of randomly initialized neural networks and testing for metrics of

accuracy and separability without training the networks via backpropagation. Unless stated oth-

erwise, for each layer, the weight matrices are drawn from a standard Gaussian distribution, and

the bias vectors are drawn from a uniform distribution on [−λ, λ], where λ is to be specified. The

data sets used were synthetic separated concentric circular rings with alternating labels. The exact

location of the data points were disturbed from the ring by random Gaussian noise.

For the low-dimensional case, we consider concentric circular rings in R2, which is visualized

below. For the high-dimensional case, we used concentric circular rings in R100, which is visualized

here in R2 using t-distributed stochastic neighbor embedding (t-SNE).

(a) Concentric circles in R2 (b) Concentric circles in R100

Figure 2. Visualization of datasets

During the experiment, we use a Support Vector Machine (SVM) to test the linear separability

of the neural network classifier. After 100,000 iterations of the SVM, the percentage of points

correctly classified by the Support Vector Machine is referred to as the accuracy of a trial. For

each experiment, we run 1000 trials of architectures of newly sampled parameters and define the

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 9

Figure 3. Performance of shallow RINN on low-dimensional data

mean as the average accuracy for a given combination of depth and width. Since out initial dataset

contains 2/3 of its points in one label and the remaining 1/3 points in the alternative label, the

average accuracy of every experiment has a lower bound of 2/3 by construction. The other metric,

separation probability, represents the percentage of trials in which the SVM achieves 100 percent

accuracy, effectively measuring the probability of a network being fully linearly separable. Unlike

average accuracy, separation probability is not lower bounded by any fixed level above zero.

3.2. Testing the Impact of Depth for Networks of Varying Width. The experimentation of

the source papers test the linear separability for networks with 1 or 2 hidden layers. In the case of

low-dimensional data, we extend this experimentation to a 3rd hidden layer, while computational

bottlenecks inhibited our analysis of deeper networks when applying them to the high-dimensional

data. We see that 3-layer neural networks generally under perform compared to 1-layer and 2-layer

networks. We also observe that despite the average accuracy of 1-layer network dominating that of

2-layer networks across all choices of width, the separation probability of a 2-layer neural network is

higher than that of a 1-layer neural network for widths of at least 33 neurons per layer. We propose

that this is due to the low-dimensional structure of the original data set. For a 1 dimensional

neural net with width d, the data is being mapped from R2 to Rd, while for a neural net with

the same width d and 1 hidden layer, the data is being mapped from R2 to Rd to Rd. During the

last mapping step, the data is from Rd to Rd, and hence when the dimension d is considerably

large compared to 2, the input in the last mapping is sufficiently sparse, hence there is a higher

probability of total separation, as compared to from 2 dimension to d dimension in the 1-layer case.

This scenario is not observed in other cases, and is up to further investigation. These results are

counterintuitive, and in a later section, we see that changing the support for the distribution from

which the bias vectors are sampled from leads to different results.

For the high-dimensional dataset, similar results are observed in average accuracy. However,

the separation probability of a 1-layer network dominates the separation probability of 2-layer

network across all tested width. This observation aligns with our initial proposed explanation in

the low-dimensional case – since the original data set is 100 dimension, the mapping in the 1-layer

10 A. CUTULI, H. MIAO, AND W. ZHU

Figure 4. Performance of RINNs of varying depth on low-dimensional data

network already has a sufficiently sparse input, and a large depth no longer provides improvement

in separation probability through increasing the sparsity of input data in the last mapping of the

neural net.

Figure 5. Performance of RINNs of varying depth on high-dimensional data

3.3. Testing the Impact of Bias Across Different Depth of Neural Network. We further

investigate the impact of maximum bias on the separation probability of the randomly initialized

neural networks.

As we discussed earlier, the bias vectors are drawn from a uniform distribution on [−λ, λ], and
we would like to investigate the impact of choice of λ on the linear separability of the network.

For networks with hidden layers, we further examine the impact of changing the maximum bias λ

across different layers based on the proposed formula

λn =
√

λn−1 +R2/3

which is derived from the estimate

∥Φn(x)∥22 ≈ ∥Φn−1(x)∥22 + λ2/3

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 11

featured in [DS21, Theorem 19], where Φn(x) = (Φn ◦Φn−1 ◦ . . .◦Φ1)(x) and Φ0(x) = x. We accept

this estimate without outlining the full proof. The essence of the proof involves computing the

expected value of ⟨Φ(x+),Φ(x−)⟩ for arbitrary points x+, x− in the ball of radius R and showing

that ⟨Φ(x+),Φ(x−)⟩ is uniformly concentrated about its expected value.

In the performance plots, we use the term ’suboptimal bias’ to indicate that the maximal bias

of deeper layers are equal to that of the first layer, whereas plots not labeled with this term

feature maximal biases that follow the aforementioned rule for each layer. As we can see from the

graph, for fixed maximum bias across layers, the performance generally grows as the maximum

bias grows, peaking at around 350 for low-dimension and 500 for high-dimension before dropping

for larger maximal biases. We conclude that for small maximal bias, increasing λ improves linear

separability.

However, this is not the case for deeper networks. As we inspect the formula more closely,

λn =
√

λn−1 +R2/3

we observe that the maximal bias in deeper layers is lower-bounded by R, which is a fixed constant

close to 359 determined by the synthesis of the dataset. With this lower-bound, we do not observe an

improvement in linear separability through increasing the maximal bias. However, as the maximal

bias grows larger and larger, we do observe that the performances of multi-layer networks with

fixed bias and varied bias converge. We also continue to observe that 1-layer networks outperform

2-layer networks, and both of them outperform 3-layer networks.

Figure 6. Performance of RINNs of varying depth and maximal bias on low-
dimensional data

3.4. Testing Skewed Supports for Bias Initialization. The theoretical results of our source

papers rely on the bias vector being sampled from a uniform distribution symmetric about 0. That

is, in our formulation of the problem, we sample many neural networks with standard Gaussian

weights and bias vectors that are uniform on [−λ, λ], and the results we report are thus the average

results across many models that are untrained. In this section of our report, we ask whether training

the network would produce bias vectors that agree with this prior distribution for bias.

12 A. CUTULI, H. MIAO, AND W. ZHU

Figure 7. Performance of RINNs of varying depth and maximal bias on high-
dimensional data

To explore this question, we test different prior distributions for bias and examine the resulting

linear separability of those networks. Namely, we examine networks whose bias vectors who are

sampled from a positively skewed uniform distribution on [0, 2λ] and networks whose bias vectors

are sampled from a negatively skewed uniform distribution on [−2λ, 0]. For each case, we maintain

the sampling of weight matrices that come from a standard Gaussian distribution.

We find that when bias is strictly positive, deeper networks separate low-dimensional data with

higher probability. This suggests a potential reasoning for the counterintuitive results presented

earlier, that increasing depth does not necessarily increase separability when the bias vector is

sampled uniformly on [−λ, λ]. Moreover, the plots reveal that when bias is strictly negative, linear

separability is severly diminished in deeper networks. In essence, when we sample many archi-

tectures whose bias distribution is symmetric about 0, the trials whose biases are predominantly

negative leads to average accuracy results that are subpar in deeper networks. The experimental

result that positive bias improves average accuracy and separation probability suggests that fully

training the network rather than testing untrained networks would tune bias in a positive direction.

Further study can be conducted to examine whether this trend continues in even deeper networks

and for high-dimensional data.

3.5. Testing Different Activation Functions. We also explored the effect different activation

functions have on the linear separability of randomly initialized neural networks.

Recall that hi(x) = W T
i x+bi measures the signed distance between x and the hyperplane hi = 0,

so a ReLU activation applied to hi(x) measures the distance from x to hi when x is on the positive

side of hi and 0 otherwise. That is, the motivation for ReLU networks in the source material is

that a neuron is activated proportionally to its signed distance from the hyperplane that separates

the data. So, a neuron is active if an input is positive and is inactive otherwise. Effectively, this

allows the network to preserve the Euclidean distances captured by the inputs when a point is on

the positive side of the hyperplane.

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 13

(a) Depth of 1 (b) Depth of 2

(c) Depth of 3

Figure 8. Separation probability of RINNs of varying depth and bias support on
low-dimensional data. We fix the choice of λ and vary the width of each network. We
clearly see that in deeper networks, sampling bias vectors from a uniform distribution
of [0, 2λ] leads to improved results.

For the different activation functions we experiment with, we consider the performance of a

leaky ReLU function f(hi(x), α) = max{hi(x), αhi(x)} with varying leak rates α, a step function

f(hi(x) = 1hi(x)>0, and a linear activation f(hi(x)) = hi(x).

Through the experiments, we see that changing the activation function can distort the pre-

served distance property that the ReLU activation offers and in turn diminish or tarnish the linear

separability of the network.

Expectedly, a leaky ReLU activation becomes less effective as it becomes more linear, but it

interestingly remains competitive with the ReLU activation even with a leak rate of 0.7. When

the activation is completely linear, however, accuracy and separation probability rests at the lower

bound regardless of the width imposed on the network. That is, a linear activation leads to

the network classifying all points as coming from one group. Although this function preserves

14 A. CUTULI, H. MIAO, AND W. ZHU

Figure 9. Performance of RINNs with varying activation functions. We fix the
depth to 1 and vary the width of the network. Bias vectors are sampled from a
uniform distribution symmetric about 0 and we fix the choice of λ.

signed distance, it introduces no non-linearity to indicate a point being on the negative side of the

hyperplane.

And lastly, the step function is unable to separate the datasets with 100% probability regardless

of the width imposed, although it achieves accuracy measurements that mark an improvement

over the linear activation. Unlike the linear activation, this function introduces non-linearity to

the network and indicates the side of a hyperplane an input rests on, but the notion of Euclidean

distance is lost. If this network were to extend further in depth, it is expected that the metrics

would be even worse since hi(x) = W T
i + bi would be operating on a vector of binary values, so

expressivity is particularly sensitive to the choice of W and b.

In summary, the ReLU activation offers two properties that are key for the classification problem:

preservation of distance and indication of class labeling via its non-linearity.

3.6. The Impact of Random Initialization. Lastly, we touch on the nature of our network

being randomly initialized. By randomly initializing weights and biases and running many trials,

we create a swath of architectures that can span the space of possible combinations. This effectively

sidesteps the added time complexity of training a network while matching the performance of a

trained network. Hence, setting a bias vector deterministically, for example, restricts the network

from covering a larger space in the same number of trials. This effect is demonstrated in the figure

below.

In the experiments we repeat the tests conducted for different supports on the bias vector sam-

pling that was outlined in Section 3.4. We fix the depth of the network to a single hidden layer.

For the networks whose bias vectors are deterministic, we set bias to 0 for the symmetric case,

λ for the positive case, and −λ for the negative case the reflect the mean of each distribution.

Through the experimentation, we clearly observe that sampling the bias vectors randomly leads to

greater linear separability in terms of average accuracy and separation probability. Moreover, we

see that networks of 0 bias perform the worse, implying that some perturbation is needed to break

symmetry when initializing the networks.

SEPARATION CAPACITY OF RANDOMLY INITIALIZED DNNS 15

Figure 10. Performance of RINNs with deterministic and random bias vectors. We
fix the depth to 1 and vary the width of the network. We see that randomization
separates the data with higher probability for each bias distribution.

In summary, randomly initializing the networks and testing many trials allows for trials to explore

a larger space of architectures and achieve greater linear separability in lieu of training. A future

experiment that we could explore is finding bounds on how many RINNs would be needed to match

the performance of a trained network, and whether it still saves time.

4. Conclusion

In this report, we explore the capacity of randomly initialized feedforward networks to separate

data into two classes. Our experiments explore a swath of architectures by randomly sampling

parameter values and compare average results for different tests. This approach sidesteps the

added time complexity of fully training a network and allows us to explore probabilistic properties

of the unsupervised learning problem theoretically and experimentally.

The theoretical justification for the method is outlined in Section 2. Namely, the problem boils

down to finding a parameterization for a neural network that effectively maps points of different

classes to opposite sides of the hyperplane.

In Section 3, we conduct a group of experiments to explore the problem empirically, and we

extend experimental results of previous papers to networks with a third hidden layer. We find that

with our synthetic data sets, when weights are sampled from a standard Gaussian distribution and

biases are sampled from a uniform distribution symmetric about 0, adding depth to the network

does not necessarily improve linear separability. However, when the biases are drawn from a

distribution that is strictly positive, adding depth does improve linear separability. The latter of

these results suggests that fully training the networks rather than testing untrained architectures

would produce biases that are positive.

We also examined the efficacy of the rectified linear unit (ReLU) activation function in this

particular problem. Applying the ReLU to all neurons leads to the best results among the activation

functions we tested, and we suggest that this is due to a pair of properties unique to ReLU. In

particular, ReLU allows the network to preserve the Euclidean distance to the hyperplane that is

16 A. CUTULI, H. MIAO, AND W. ZHU

to be estimated, and the function’s break in linearity allows the network to determine which side

of the hyperplane that an input lies on. Other activation functions violate at least one of these two

properties and thus produce results that are not competitive.

Looking ahead, an important experiment to perform next would be examining the impact of the

neural network architecture on a dataset with increased complexity. The advantage of neural net-

works at disentangling complex geometry of datasets makes us believe that for a more complex low-

dimensional dataset, deeper network will perform better. However, the case for high-dimensional

datasets remains intriguing.

We give thanks to the authors of [GS22] for being so gracious as to provide us with their source

code.

References

[DS21] Genzel M. Jacques L. Dirksen, S. and A. Stollenwerk. The separation capacity of random neural networks.

arXiv preprint arXiv:2108.00207, 2021.

[GC16] Bengio Y. Goodfellow, I. and A. Courville. Deep Learning. MIT Press, Cambridge, MA, USA, 2016. http:

//www.deeplearningbook.org.

[GS22] Mahankali S. Ghosal, P. and Y. Sun. Randomly initialized one-layer neural networks make data linearly

separable. arXiv preprint arXiv:2205.11716, 2022.

[Ver18] R. Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and Probabilis-

tic Mathematics. Cambridge University Press, Cambridge, 2018. An introduction with applications in data

science, With a foreword by Sara van de Geer.

A. Cutuli, Department of Industrial Engineering and Operations Research, Columbia University,

500 W 120th St 315, New York, NY 10027 USA

Email address: ajc2312@columbia.edu

H. Miao, Department of Industrial Engineering and Operations Research, Columbia University,

500 W 120th St 315, New York, NY 10027 USA

Email address: hm2935@columbia.edu

W. Zhu, Department of Mathematics, Columbia University,

2990 Broadway, New York, NY 10027 USA

Email address: wz2453@columbia.edu

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	1. Introduction
	2. The geometry of linear separation
	3. Experimental results
	4. Conclusion
	References

