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Introduction

▶ In the execution problem, an agent aims to liquidate or acquire a
certain number of shares in a given time horizon

▶ To achieve optimal scheduling in a continuous-time setting, the
agent must choose a trading rate to balance the trade-off between
market impact and price uncertainty
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Model-based approach: a brief history

▶ Almgren and Chriss (2000) derive a strategy optimizing
variance-adjusted expected execution revenue under linear market
impacts

▶ This paved the way for extensions
▶ e.g. generalization of market impact assumptions, variations on price

evolution, etc.

▶ Reliance on model-based stochastic control
▶ model-based = model parameters are assumed to be known

▶ However, estimating market impact models through historical data is
difficult (Kyle and Obizhaeva (2018))
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An influx of (discrete-time) RL efforts

▶ Nevmyvaka et al. (2006) conducted a seminal investigation of RL
applied to the execution problem using Q-learning

▶ Ning et al. (2021) developed a double deep Q-learning method and
showcased its empirical performance on historical data

▶ Park and Van Roy (2015) proposed a method for simultaneous
execution and learning in a market impact model

▶ Hambly et al. (2021) applied a policy gradient method for the linear
quadratic regulator problem to the Almgren-Chriss (AC) framework

▶ All these papers are concerned with the discrete-time setting

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Problems with discrete-time RL

▶ Continuous state and action spaces inspire the use of neural
networks as approximators of the value function and control policy
▶ Requires delicate hyperparameter tuning
▶ Convergence issues
▶ Interpretation difficulties
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Expanding interest of continuous-time RL

▶ Execution is a high-frequency decision-making problem, making the
continuous-time setting natural for studying execution RL algorithms

▶ Wang et al. (2020) pioneered a continuous-time RL framework

▶ Wang and Zhou (2020) developed an actor-critic algorithm for
continuous-time mean-variance portfolio selection
▶ Algorithm is based off an analytically formed value function and

exploration distribution
▶ Compares favorably with a policy gradient algorithm that relies on

neural network approximations

▶ Developments are ever-growing
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Main contributions

▶ Offline actor-critic algorithm based on the continuous-time AC
model and the continuous-time RL framework of Wang et al. (2020)

▶ Main contributions are threefold

1. Novel perspective for actor-critic algorithm design in continuous-time
RL

2. Error analysis of the algorithm
3. Simulation and real-data study to demonstrate the algorithm’s nice

convergence behavior and out-of-sample performance
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Classical AC model in continuous time

▶ Task is to liquidate q0 > 0 shares within the time horizon [0,T ]

▶ Trader’s execution strategy is the control process ν = (νt)t∈[0,T ]

▶ Inventory process under ν is qν = (qν
t )t∈[0,T ] and satisfies

dqν
t = νtdt, t ∈ [0,T ], qν

0 = q0 (1)

▶ Stock price Sν = (Sν
t )t∈[0,T ] follows an arithmetic Brownian motion

(ABM) controlled by the strategy ν through permanent impact function
k(ν) = κν, where κ > 0

dSν
t = k(νt)dt + σS0dWt , t ∈ [0,T ], Sν

0 = S0 (2)

▶ Cash process of the trader under ν evolves as

dxν
t = −νt(Sν

t + g(νt))dt, t ∈ [0,T ], xν
0 = x0 (3)

with temporary impact function g(ν) = ην, where η > 0

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Motivating the mean-quadratic variation (MQV) objective

▶ Almgren and Chriss (2000) do not use any information regarding the
stock price evolution after the start of trading

▶ The quadratic variation (QV) risk measure

E
[∫ T

0

(qν
t dSν

t )
2

]
= E

[∫ T

0

σ2S2
0 (q

ν
t )

2dt

]
(4)

captures the volatility path of the portfolio value process Pν
t = xν

t + qν
t Sν

t

since
(dPν

t )
2 = (qν

t dSν
t )

2 (5)

▶ Under the MQV objective, the stochastic control problem is
time-consistent and measures risk along the entire trading path (Forsyth
et al. (2012))
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Solution to classical continuous-time AC

▶ We have the dynamic optimization problem

sup
ν∈A0(q0,S0)

E
[∫ T

0

(
−νt(S

ν
t + ηνt) − λσ

2S2
0 (q

ν
t )

2
)
dt + hT (q

ν
T , S

ν
T )

∣∣∣∣ qν
0 = q0, S

ν
0 = S0

]
,

where λ > 0 measures risk aversion, A0(q0,S0) is the set of admissible
controls, and

hT (q, S) =

{
0, if q = 0

−∞, otherwise
(6)

penalizes inventory not liquidated by time T
▶ Optimal value function and optimal trading rate function are

V cl(t, q, S) = qS−
q2

2
(κ+2ηKcoth(K(T−t))), ν

cl(t, q, S) = −qKcoth(K(T−t)), (7)

where K =
√

λσ2S2
0

η
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Solution to classical continuous-time AC

▶ Optimal inventory trajectory is thus

qν
cl

t = q0
sinh(K (T − t))

sinh(KT )
, t ∈ [0,T ] (8)

▶ Subbing (8) into (7), we obtain the optimal trading rate process

νclt = −q0K
cosh(K (T − t))

sinh(KT )
, t ∈ [0,T ],

which shows lim
t→T

νclt = − q0K
sinh(KT )
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Towards an RL algorithm

▶ The three parameters of the AC model (i.e. κ, η, σ) are difficult to
estimate empirically (Kyle and Obizhaeva (2018))

▶ RL instead tries to learn the optimal policy by interacting with the
unknown environment through exploration

▶ The results obtained from formulating and solving the exploratory
MQV (EMQV) problem will form the basis for developing RL
algorithms
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Problem formulation

▶ To incorporate exploration, we introduce density function πt to relax νt to
be a probability distribution at any time t

▶ Using argument from Wang et al. (2020), we obtain the exploratory
version of dynamics (1), (2) and (3) as

dqπ
t =

∫
R
νπt(ν)dνdt, t ∈ [0,T ], qπ

0 = q0 (9)

dSπ
t = κ

∫
R
νπt(ν)dνdt + σS0dWt , t ∈ [0,T ], Sπ

0 = S0 (10)

dxπ
t =

∫
R
−ν(Sπ

t + ην)πt(ν)dνdt, t ∈ [0,T ], xπ
0 = x0 (11)

▶ Overall information gain from exploration is quantified with accumulative
Shannon differential entropy

H(π) := −
∫ T

0

∫
R
πt(ν)lnπt(ν)dνdt
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Problem Formulation

▶ Introducing temperature parameter ζ ≥ 0, we obtain the EMQV
formulation

sup
π∈A0(q0,S0)

E
[∫ T

0

∫
R

(
−ν(Sπt + ην) − λσ

2S20 (q
π
t )2 − ζlnπt (ν)

)
πt (ν)dνdt + hT (qπT , SπT )

∣∣∣∣ qπ0 = q0, S
π
0 = S0

]
(12)

▶ To solve the EMQV problem, we define the value function

Vπ (t, q, S) := E
[∫ T

t

∫
R

(
−ν(Sπu + ην) − λσ

2S20 (q
π
u )2 − ζlnπu (ν)

)
πu (ν)dνdu + hT (qπT , SπT )

∣∣∣∣ qπt = q, Sπt = S

]
(13)

▶ The optimal value function is

V ∗(t, q,S) = sup
π∈At (q,S)

V π(t, q, S)

▶ Solutions to
dqπ

t = νπt dt. t ∈ [0,T ], qπ
0 = q0, (14)

dSπ
t = κνπt dt + σS0dWt . t ∈ [0,T ], Sπ

0 = S0 (15)

give sample trajectories of the inventory and stock price for an action
sequence {νπt , t ∈ [0,T ]} generated by the control policy π

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Policy evaluation for a class of control policies

▶ Consider a class of feedback controls of the form

πf (ν; t, q, S) = N (ν | −qf (T − t), c), ∀(t, q, S) ∈ [0,T ]× R× R,

where c > 0 is constant and f (T − t) is a deterministic function1

satisfying the following conditions:

(i) f is continuous
(ii) lim

t→T
f (T − t) = ∞

(iii)
∫ T

t
f (T − u)du = ∞ ∀t ∈ [0,T )

(iv) lim
t→T

∫ T

t
f (T − s)exp(−

∫ s

t
f (T − u)du)ds is finite

(v)
∫ T

t
f 2(T − s)exp(−2

∫ s

t
f (T − u)du)ds <∞ ∀t ∈ [0,T )

(vi) lim
t→T

∫ T

t
f 2(T − s)exp(−2

∫ s

t
f (T − u)du)ds = ∞

▶ The optimal feedback control distribution for the EMQV problem is in this
class

1Two example functions are coth(T − t) and 1/(T − t)
Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Policy evaluation for a class of control policies

▶ Under πf , the trader’s inventory evolves deterministically with dynamics

dqπf

t = −qπf

t f (T − t)dt, qπf

0 = q0,

which has the unique solution

qπf

t = q0exp

(
−
∫ t

0

f (T − u)du

)
, (16)

and, from condition (iii),

qπf

T = 0 (17)

▶ The stock price dynamics become

dSπf

t = −κq0f (T − t)exp

(
−
∫ t

0

f (T − u)du

)
dt + σS0dWt , Sπf

0 = S0

Proposition 3.1
The value function V πf

is given by

V πf

(t, q,S) = qS +
(
ζln

√
2πec − ηc

)
(T − t)

− q2

(
κ

2
+

∫ T

t

(λσ2S2
0 + ηf 2(T − s))exp

(
−2

∫ s

t

f (T − u)du

)
ds

)
for any (t, q, S) ∈ [0,T ]× R× R
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Optimal solution to the EMQV problem

▶ The optimal value function V ∗(t, q, S) satisfies the HJB equation

0 = ωt +
σ2S2

0

2
ωSS − λσ2S2

0 q2 + sup
π∈P(R)

(∫
R
((κωS + ωq − S)ν − ην2 − ζlnπ(ν))π(ν)dν

)
(18)

with terminal condition
ω(T , q,S) = hT (q, S) (19)

Theorem 3.1
For ζ > 0, (18) is equivalent to

0 = ωt +
σ2S2

0

2
ωSS − λσ2S2

0 q2 +
(κωS + ωq − S)2

4η
+ ζln

√
πζ

η
.

The solution to this PDE with terminal condition (19) is given by

ω(t, q, S) = qS − q2

2
(κ+ 2ηKcoth(K(T − t))) + ζln

√
πζ

η
(T − t), (20)

for any (t, q, S) ∈ [0,T ]× R× R, where K =
√

λσ2S2
0

η
. The maximizer in (18) is given by

π∗(ν; t, q, S) = N
(
ν

∣∣∣∣ κωS + ωq − S

2η
,
ζ

2η

)
= N

(
ν

∣∣∣∣−qKcoth(K(T − t)),
ζ

2η

)
(21)
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Optimal solution to the EMQV problem

Theorem 3.2
V ∗(t, q,S) = ω(t, q,S) and the optimal feedback control is Gaussian with
density function given by π∗(ν; t, q,S). Furthermore, the optimal value function
and optimal control of the EMQV problem converge to those of the problem
without exploration and entropy regularization as ζ → 0.

▶ Similar to Wang and Zhou (2020), we can develop a policy improvement
theorem. That is, if we let

π̃(ν; t, q,S) := N
(
ν

∣∣∣∣ κV π
S + V π

q − S

2η
,
ζ

2η

)
, (22)

we can show V π̃(t, q,S) ≥ V π(t, q,S) for any admissible π.

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Designing an RL algorithm

▶ Since we still need the AC model parameters, these analytical results
are not implementable
▶ Denote them as ψenv = (κenv, ηenv, σ

2
env)

▶ Assuming the environment is described by the AC model, we can
develop an actor-critic RL algorithm to directly learn the optimal
policy

▶ The algorithm iteratively applies a policy in the environment to
collect samples and then updates the policy

▶ The analytical results specify a natural parameterization of policy
and value function with a small number of parameters

▶ Convergence is guaranteed under certain conditions

▶ Neural network parameterizations are large and generally do not
guarantee convergence

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Parameterization of policy and value function

▶ Given the form of the optimal feedback control (21), consider the family of
distributional feedback controls

πΦ(ν; t, q,S) = N (ν | −qφ1coth(φ1(T − t)), ζφ2), (23)

which is parameterized by Φ := (φ1, φ2) for φ1 > 0 and φ2 > 0
▶ Calculating the integral in (16) yields

qΦt = q0
sinh(φ1(T − t))

sinh(φ1T )
, t ∈ [0,T ] (24)

▶ Applying Proposition 3.1, we obtain the value function of πΦ as

VπΦ
(t, q, S) = qS + ζ

(
ln
√

2πeζφ2 − ηenvφ2

)
(T − t)

−
q2

2

(
κenv +

(
ηenvφ1 +

λσ2
envS

2
0

φ1

)
coth(φ1(T − t)) +

(
ηenvφ1 −

λσ2
envS

2
0

φ1

)
φ1(T − t)

sinh2(φ1(T − t))

)
(25)
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Parameterization of policy and value function

▶ We wish to approximate V πΦ

with

V Θ(t, q, S) := qS +
ζ

2

(
ln(2πeζφ2)− (θ2 + θ3)

φ2

φ1

)
(T − t)

− q2

2

(
θ1 + θ2coth(φ1(T − t)) + θ3

φ1(T − t)

sinh2(φ1(T − t))

) (26)

for any (t, q, S) ∈ [0,T ]× R× R, and Θ := (θ1, θ2, θ3) ∈ R3

▶ We want to approach the true parameter vector for the value function of πΦ, which
is

Θ∗(Φ) :=

θ∗1 (Φ)θ∗2 (Φ)
θ∗3 (Φ)

 =

1 0 0

0 φ1
λS2

0
φ1

0 φ1 −λS2
0

φ1


κenv

ηenv
σ2
env

 (27)

▶ Any Θ, together with Φ, implies an environment parameter ψimp = (κimp, ηimp, σ
2
imp)

through
Θ = M(Φ)ψimp(Θ;Φ), (28)

where M(Φ) is the matrix in (27), and

ψimp(Θ;Φ) = M(Φ)−1Θ (29)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Martingale loss function for policy evaluation

▶ Jia and Zhou (2022ab) propose martingale loss function for policy iteration

▶ A feedback policy πΦ of the form given by (23) has entropy

H(πΦ) = −
∫
R
πΦ(ν)lnπΦ(ν)dν = ln

√
2πeζφ2

▶ By Theorem 1 of Jia and Zhou (2022b), the process M = (MΦ
t )t∈[0,T ] is a martingale,

where

MΦ
t := V πΦ

(t, qΦ
t , S

Φ
t ) +

∫ t

0

(∫
R

renv(ν)π
Φ
u (ν)dν − λσ2

envS
2
0 (q

Φ
u )

2 + ζln
√

2πeζφ2

)
du

with renv = −ν(SΦ
u + ηenvν) being execution revenue received from the AC environment

▶ We define the martingale loss function ML(Θ;Φ) for fixed policy parameter Φ as

ML(Θ;Φ) : = E
[∫ T

0

(
MΦ,Θ

T −MΦ,Θ
t

)2
dt

]
= E

[∫ T

0

(
VΘ(T , qΦT , S

Φ
T )− VΘ(t, qΦt , S

Φ
t )

+

∫ T

t

(∫
R
renv(ν)π

Φ
u (ν)dν − λσ2

envS
2
0 (q

Φ
u )

2 + ζln
√

2πeζφ2

)
du

)2

dt


▶ Policy evaluation boils down to minimizing ML(Θ;Φ) over Θ

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Approximating the martingale loss function

▶ From (17), we deduce V Θ(T , qΦ
T , S

Φ
T ) = 0

▶ We approximate ML(Θ;Φ) by

ML(Θ; Φ) ≈ E

N−1∑
i=0

(
− VΘ(ti , q

Φ
ti
, SΦ

ti
) + ζ(T − ti )ln

√
2πeζφ2

+

N−1∑
j=i

(∫
R
renv(ν)π

Φ
tj
(ν)dν − λσ

2
envS

2
0 (q

Φ
tj
)2
)

∆t

)2

∆t


▶ We use Gaussian-Hermite (GH) quadrature to approximate∫

R
renv(ν)π

Φ
tj
(ν)dν ≈ rΦtj

:=
1

√
π

n∑
m=1

ω
GH
m renv(µ

Φ
tj
+

√
2σΦ

tj
yGH
m ),

where µΦ
tj = −qΦ

tjφ1coth(φ1(T − tj)), σ
Φ
tj =

√
ζφ2, and ω

GH
m are yGH

m are
quadrature weights and abscissas, respectively

▶ Moreover, we approximate

σ
2
envS

2
0 (q

Φ
tj
)2∆t ≈

(
∆PΦ

tj

)2
, ∆PΦ

tj
:= rΦtj

∆t + SΦ
tj

(
qΦ
tj+1

− qΦ
tj

)
+ qΦ

tj

(
SΦ
tj+1

− SΦ
tj

)
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Approximating the martingale loss function

▶ We now approximate ML(Θ;Φ) by

ML∆t(Θ; Φ) := E

N−1∑
i=0

−VΘ
i + ζ(T − ti )ln

√
2πeζφ2 +

N−1∑
j=i

(
rΦtj

∆t − λ
(
∆PΦ

tj

)2
)2

∆t

 ,

where V Θ
i := V Θ(ti , q

Φ
ti , S

Φ
ti )

▶ This leads to
∂θk

ML(Θ; Φ) ≈ ∂θk
ML∆t(Θ; Φ)

= E

−2

N−1∑
i=0

∂θk
VΘ
i

−VΘ
i + ζ(T − ti )ln

√
2πeζφ2 +

N−1∑
j=i

(
rΦtj

∆t − λ
(
∆PΦ

tj

)2
)∆t

 ,

(30)

where for i = 0, . . . ,N − 1,

∂θ1
VΘ
i = −

(qΦ
ti
)2

2
, (31)

∂θ2
VΘ
i = −

(qΦ
ti
)2

2
coth(φ1(T − ti )) −

ζφ2

2φ1
(T − ti ), (32)

∂θ3
VΘ
i = −

(qΦ
ti
)2

2

φ1(T − ti )

sinh2(φ1(T − ti ))
−

ζφ2

2φ1
(T − ti ) (33)
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Approximating the policy gradient

▶ Let G(Φ) := V πΦ

(0, q0, S0) as it’s given in (25). We can directly calculate

∇ΦG(Φ) =

[
∂φ1G(Φ)
∂φ2G(Φ)

]
=

− q20
2

(
ηenvφ1 − λσ2

envS
2
0

φ1

)
g(φ1)

ζT
(

1
2φ2

− ηenv
)  , (34)

where

g(φ1) :=
coth(φ1T )

φ1
+

T

sinh2(φ1T )
− 2φ1T 2

sinh2(φ1T )tanh(φ1T )
(35)

▶ Since (34) contains unknown environment parameters, we need to replace
them with their implied counterparts to approximate the policy gradient,
i.e.

∇ΦG(Φ) ≈ ∇ΦG(Φ; Θ) :=

− q20
2

(
ηimpφ1 −

λσ2
impS

2
0

φ1

)
g(φ1)

ζT
(

1
2φ2

− ηimp

)
 (29)

=

 − q20θ3
2 g(φ1)

ζT
(

1
2φ2

− θ2+θ3
2φ1

)
(36,37)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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The EMQV algorithm

▶ Start with initial guesses Θ(0) and Φ(0)

1. PE update: Update Θ(ℓ) to Θ̃(ℓ) by gradient descent as

θ̃
(ℓ)
k = θ

(ℓ)
k − ∂θk ML∆t(Θ

(ℓ); Φ(ℓ))/α
(ℓ)
θ , k = 1, 2, 3,

where 1/α
(ℓ)
θ is the learning rate for iteration ℓ

2. PG update: Update policy parameters by gradient ascent as

φ
(ℓ+1)
k = φ

(ℓ)
k + ∂φk G(Φ(ℓ); Θ̃(ℓ))/α(ℓ)

φ , k = 1, 2, (38)

where 1/α
(ℓ)
φ is another learning rate

3. Recalibration (RC): To ensure the estimated value function moves in
lockstep with the policy update, we recalibrate Θ(ℓ+1) via

Θ(ℓ+1) = M(Φ(ℓ+1))M(Φ(ℓ))−1Θ̃(ℓ)
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The EMQV algorithm

▶ Collection of samples from the environment: In iteration ℓ, generate
multiple episodes by interacting with the environment to collect samples.
In episode m and at ti = i∆t, collect a sample (ti , q

ℓ,m
ti
, Sℓ,m

ti
, r ℓ,mti

,∆Pℓ,m
ti

)

using the control πΦ(ℓ)

ti = N (· | µ(ℓ)
ti
, (σ

(ℓ)
ti
)2), where

µ
(ℓ)
ti

= −qℓ,m
ti
φ

(ℓ)
1 coth(φ

(ℓ)
1 (T − ti )), (σ

(ℓ)
ti
)2 = ζφ

(ℓ)
2 .

Collect trajectories for the exploratory state process from the environment.

1. Collect exploratory execution revenue r ℓ,mti
∆t by calculating trading

rate νj = µ
(ℓ)
ti

+
√
2σ

(ℓ)
ti

yGH
j , sending an order of size νj∆t and

receiving revenue renv(νj)∆t, doing this n times, and calculating
r ℓ,mti

∆t = 1√
π

∑n
j=1 ω

GH
j renv(νj)∆t

2. Collect quadratic variation ∆Pℓ,m
ti

by sending an order of size µ
(ℓ)
ti
,

observing Sℓ,m
tt+i

, updating qℓ,m
ti+1

= qℓ,m
ti

+ µ
(ℓ)
ti
∆t, and calculating

∆Pℓ,m
ti

= r ℓ,mti
∆t + Sℓ,m

ti

(
qℓ,m
ti+1

− qℓ,m
ti

)
+ qℓ,m

ti

(
Sℓ,m
ti+1

− Sℓ,m
ti

)
. (39)
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Algorithm 1: EMQV algorithm for the optimal execution problem.

Input: Environment Env, initial price S0, initial inventory q0, execution horizon T , timestep ∆t, risk-aversion
parameter λ, temperature parameter ζ, abscissas yGH

1 , . . . , yGH
n and weights wGH

1 , . . . ,wGH
n of the GH

quadrature, number of training iterations L, number of episodes M;

Initialize Θ(0) = (θ
(0)
1 , θ

(0)
2 , θ

(0)
3 ) and Φ(0) = (φ

(0)
1 , φ

(0)
2 );

for training iterations ℓ = 0, . . . , L do
for episodes m = 0, . . . ,M do

for time steps i = 0, . . . , ⌊ T
∆t ⌋ do

Calculate µ
(ℓ)
ti = −qℓ,mti φ

(ℓ)
1 coth(φ

(ℓ)
1 (T − ti )) and (σ

(ℓ)
ti )2 = ζφ

(ℓ)
2 ;

for j = 0, . . . , n do

Calculate νj = µ
(ℓ)
ti +

√
2σ

(ℓ)
ti yGH

j , send νj∆t, and receive renv(νj);
Reset Env to ti ;

end

Calculate r ℓ,mti = 1√
π

∑n
j=1 ω

GH
j renv(νj);

Send µ
(ℓ)
ti , observe Sℓ,m

ti+1
, update qℓ,mti+1

= qℓ,mti + µ
(ℓ)
ti ∆t, and calculate ∆Pℓ,m

ti ;

end

end
Policy evaluation:
Calculate ∂θkML∆t(Θ

(ℓ); Φ(ℓ)) = 1
M

∑M
m=1 ∂θkML∆t(Θ

(ℓ); Φ(ℓ))(m) and

θ̃
(ℓ)
k = θ

(ℓ)
k − ∂θkML∆t(Θ

(ℓ); Φ(ℓ))/α
(ℓ)
θ for k = 1, 2, 3;

Policy gradient:
Calculate ∂φk

G (Φ(ℓ); Θ̃(ℓ)) = 1
M

∑M
m=1 ∂φk

G (Φ(ℓ); Θ̃(ℓ))(m) and update

φ
(ℓ+1)
k = φ

(ℓ)
k + ∂φk

G (Φ(ℓ); Θ̃(ℓ))/α
(ℓ)
φ for k = 1, 2;

Recalibration:
Update Θ(ℓ+1) = M(Φ(ℓ+1))M(Φ(ℓ))−1Θ̃(ℓ);

end

Output: Learned policy πΦ(L)

(ν | t, q,S) = N (ν | −qφ
(L)
1 coth(φ

(L)
1 (T − t)), ζφ

(L)
2 )
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Next step: convergence analysis for EMQV

▶ We will be analyzing convergence for the EMQV algorithm

▶ First, we will obtain useful properties of the exact martingale loss
function

▶ We will then analyze the convergence of exact PG, which will
motivate convergence analysis for EMQV
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Analytical formula of the martingale loss function

Lemma 5.1
The martingale loss function, its gradient and Hessian matrix are given by

ML(Θ;Φ) = γ(Φ) + ρ(Θ;Φ)⊺I (Φ)ρ(Θ;Φ),

∇ΘML(Θ;Φ) = 2A(Φ)⊺I (Φ)ρ(Θ;Φ),

∇2
ΘML(Θ;Φ) = 2A(Φ)⊺I (Φ)A(Φ),

(40)

where γ(Φ) =
σ2
envq

2
0S

2
0

φ1sinh2(φ1T )

(
cosh(2φ1T )−1

8φ1
− φ1T

2

4

)
, ρ(Θ;Φ) = A(Φ)Θ + benv(Φ) with

A(Φ) =


0 ζφ2

2φ1

ζφ2

2φ1
+

φ1q
2
0

2sinh2(φ1T )
q2
0

2sinh2(φ1T )
0 0

0
q2
0

4sinh2(φ1T )
0

 , benv(Φ) =


−ζηenvφ2 − q2

0(ηenvφ
2
1−λσ2

envS
2
0 )

2sinh2(φ1T )
κenvq

2
0

2sinh2(φ1T )
q2
0(ηenvφ

2
1+λσ2

envS
2
0 )

4φ1sinh2(φ1T )

 , (41)

and

I (Φ) =

I1 I4 I5
I4 I2 I6
I5 I6 I3

 , (42)

with

I1 =
1

3
T 3, I2 =

sinh(4φ1T )

32φ1
− sinh(2φ1T )

4φ1
+

3

8
T ,

I3 =
sinh(4φ1T )

8φ1
− 1

2
T , I4 =

T sinh(2φ1T )

4φ1
+

1− cosh(2φ1T )

8φ2
1

− 1

4
T 2,

I5 =
T cosh(2φ1T )

2φ1
− sinh(2φ1T )

4φ2
1

, I6 =
sinh4(φ1T )

2φ1
.

Furthermore, ML(Θ∗(Φ); Φ) = γ(Φ) and ∇ΘML(Θ∗(Φ); Φ) = 0.
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Useful properties of the Hessian

▶ Let S(Φ) := A(Φ)⊺I (Φ)A(Φ), L(Φ) := 2∥S(Φ)∥∞, and
µ(Φ) := 2λmin(S(Φ))

Lemma 5.2
The matrix S(Φ) is positive definite and
0 < λmin(S(Φ)) < λmax(S(Φ)) ≤ ∥S(Φ)∥∞. Thus, µ(Φ) ∈ (0, L(Φ)).

▶ In the ensuing analysis, we explore how the gradient steps in PE and
PG influence the performance gap between our algorithm and exact
updates
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Convergence of the exact PG

▶ Denote the optimal policy parameters by

Φ∗ = (φ∗
1 , φ

∗
2 ), φ∗

1 =
√
λσ2

envS2
0/ηenv, φ∗

2 = 1/(2ηenv) (43)

▶ In the exact PG update,
Φ(ℓ+1) = Φ(ℓ) +∇ΦG(Φ(ℓ))/α(ℓ)

φ . (44)

Lemma 5.3
For any fixed φ

2
> 0, there exists a positive constant LG independent of Φ such that for any φ1, φ

′
1 > 0 and φ2, φ

′
2 > φ

2
,

−G(Φ′) ≤ −G(Φ)−∇ΦG(Φ)⊺(Φ′ − Φ) +
LG

2
∥Φ′ − Φ∥22.

Lemma 5.4
For any fixed 0 < φ

1
< φ̄1 <∞, 0 < φ

2
< φ̄2 <∞ such that Φ∗ ∈ CΦ := [φ

1
, φ

2
]× [φ̄1, φ̄2], G(Φ) satisfies the local

Polyak- Lojasiewicz (P L) condition on Φ ∈ CΦ; i.e., there exists a positive constant µG independent of Φ such that for any
Φ ∈ CΦ,

1

2
∥ − ∇ΦG(Φ)∥22 ≥ µG (G(Φ∗)− G(Φ)).

Furthermore, we can always choose LG to be greater than µG .
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Estimate of the performance gap for exact PG

Theorem 5.1
For any fixed CΦ := [φ

1
, φ

2
]× [φ̄1, φ̄2] with 0 < φ

1
< φ∗

1 < φ̄1 < ∞ and 0 < φ
2
< φ∗

2 < φ̄2 < ∞, and the exact

PG update scheme (44), if Φ(0) ∈ CΦ and

α(ℓ)
φ > max

{
∂φ1G (Φ(ℓ))

φ̄1 − φ
(ℓ)
1

,
∂φ1G (Φ(ℓ))

φ
1
− φ

(ℓ)
1

,
∂φ2G (Φ(ℓ))

φ̄2 − φ
(ℓ)
2

,
∂φ2G (Φ(ℓ))

φ
2
− φ

(ℓ)
2

}
:= cPG(Φ

(ℓ),∇ΦG (Φ(ℓ))) (45)

for any ℓ = 0, 1, . . ., then Φ(ℓ) ∈ CΦ for all ℓ, and the performance gap satisfies

G (Φ∗)− G (Φ(ℓ+1)) ≤
(
1− C

(ℓ)
φ,1

)(
G (Φ∗)− G (Φ(ℓ))

)
,

where
C

(ℓ)
φ,1 = µG

(
2α(ℓ)

φ − LG
)
/(α(ℓ)

φ )2, (46)

and LG , µG are positive constants in Lemma 5.3 and Lemma 5.4. If, in addition to (45),

α(ℓ)
φ > LG/2, (47)

then
0 < C

(ℓ)
φ,1 ≤ µG/LG < 1, (48)

and hence the linear convergence of the exact PG iterations.
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Error analysis of one-step PE

Lemma 5.5
For Φ(ℓ) and Θ(ℓ), after the one-step PE update

Θ̃(ℓ) = Θ(ℓ) −∇ΘML(Θ(ℓ); Φ(ℓ))/α
(ℓ)
θ , (49)

with α
(ℓ)
θ > L(Φ(ℓ))/2, we have

∥Θ̃(ℓ) −Θ∗(Φ(ℓ))∥2 ≤ Λ(α
(ℓ)
θ ,Φ(ℓ))∥Θ(ℓ) −Θ∗(Φ(ℓ))∥2, (50)

where

Λ(αθ,Φ) =

{
2λmax(S(Φ))/αθ − 1 if L(Φ)/2 < αθ < λmax(S(Φ)) + λmin(S(Φ)),

1− 2λmin(S(Φ))/αθ if αθ ≥ λmax(S(Φ)) + λmin(S(Φ)).
(51)

We also have
0 < Λ(αθ,Φ) ≤ 1− εΛ for any Φ ∈ CΦ, (52)

where εΛ ∈ (0, 1) is a constant independent of Φ but dependent of the chosen CΦ.
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Error analysis of one-step PG

Lemma 5.6
Suppose Φ∗,Φ(ℓ) ∈ CΦ. After one-step PG (38) using the approximate policy
gradient ∇ΦG(Φ(ℓ); Θ̃(ℓ)), if

α(ℓ)
φ > max

{
cPG(Φ

(ℓ),∇ΦG(Φ(ℓ); Θ̃(ℓ))), LG/2

}
,

we have Φ(ℓ+1) ∈ CΦ and

G(Φ∗)−G(Φ(ℓ+1)) ≤
(
1 − C

(ℓ)
φ,1

)(
G(Φ∗) − G(Φ(ℓ))

)
+Cφ,2∥∆Θ̃(ℓ)(Φ(ℓ))∥2

2+Cφ,3∥∆Θ̃(ℓ)(Φ(ℓ))∥2,

where ∆Θ̃(ℓ)(Φ(ℓ)) := Θ̃(ℓ) −Θ∗(Φ(ℓ)), C
(ℓ)
φ,1 is defined in (46) and satisfies

(48), and Cφ,2 and Cφ,3 are positive constants independent of ℓ.
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Error analysis of RC

Lemma 5.7
After the RC step, if

α(ℓ)
φ > max

{
cRC(ε,Φ

(ℓ), Θ̃(ℓ)), cPG(Φ
(ℓ),∇ΦG (Φ(ℓ), Θ̃(ℓ)))

}

and

cRC(ε,Φ
(ℓ), Θ̃(ℓ)) :=

Λ(α
(ℓ)
θ ,Φ(ℓ))1{θ̃(ℓ)

3 ≤0} − (1− ε)1{θ̃(ℓ)
3 >0}

φ
(ℓ)
1

(
1− ε− Λ(α

(ℓ)
θ ,Φ(ℓ))

) ∂φ1G (Φ(ℓ), Θ̃(ℓ)) (53)

for any fixed ε ∈ (0, εΛ), we have

∥Θ(ℓ+1) −Θ∗(Φ(ℓ+1))∥2 ≤ d(ℓ)∥Θ(ℓ) −Θ∗(Φ(ℓ))∥2, (54)

where

d(ℓ) := max

{
1, φ

(ℓ+1)
1 /φ

(ℓ)
1 , φ

(ℓ)
1 /φ

(ℓ+1)
1

}
Λ(α

(ℓ)
θ ,Φ(ℓ)) ∈ (0, 1− ε). (55)
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Error bound for the performance gap of the EMQV algorithm

Theorem 5.2
Suppose Φ∗,Φ(0) ∈ CΦ and assume the following condition is satisfied for ℓ = 0, 1, . . . .

Condition 1: α
(ℓ)
θ > L(Φ(ℓ))/2, and for any fixed 0 < ε < εΛ,

α(ℓ)
φ > max

{
cPG(Φ

(ℓ),∇ΦG (Φ(ℓ), Θ̃(ℓ))), LG/2, cRC(ε,Φ
(ℓ), Θ̃(ℓ))

}
. (56)

Then Φ(ℓ) ∈ CΦ for all ℓ and

G (Φ∗)−G (Φ(ℓ+1)) ≤ (G (Φ∗)−G (Φ(0)))E (ℓ+1)+Cφ,2(∆Θ0)
2(E ⊛D2)(ℓ)+Cφ,3∆Θ0(E ⊛D)(ℓ), (57)

where

E (ϱ) =

ϱ−1∏
ι=0

(
1− C

(ℓ−ι)
φ,1

)
, ϱ = 0, 1, . . . , ℓ+ 1, (58)

D(ℓ) = Λ(α
(ℓ)
θ ,Φ(ℓ))

ℓ−1∏
ι=0

d(ι) ∈ (0, (1− ε)ℓ), (59)

with (E ⊛ D)(ℓ) =
∑ℓ

ϱ=0 E (ℓ− ϱ)D(ϱ) and ∆Θ0 := ∥Θ(0) −Θ∗(Φ(0))∥2.
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Interpretation of the performance gap

▶ The upper bound on the performance gap is the sum of three parts
▶ The first is due to PG error, which converges to 0
▶ The last two are due to PE error, and the summands coverge to 0

▶ However, the PE error accumulates with respect to ℓ

▶ To obtain convergence of the algorithm, we must ensure α
(ℓ)
φ is also

small enough to overcome the cumulative impact of PE error
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Convergence of the EMQV algorithm

Theorem 5.3
Assume the following condition holds in addition to Condition 1.
Condition 2: For any fixed ε and ε̄ such that 0 < ε̄ < ε < εΛ < 1,

α(ℓ)
φ > cCVG(ε, ε̄) :=

µG +
√
µG (µG − βε,ε̄LG )

βε,ε̄
1{µG>βε,ε̄LG}, (60)

where βε,ε̄ := (ε− ε̄)/(1− ε̄) ∈ (0, 1).
Then, the sequence of performance gaps {G(Φ(ℓ))− G(Φ∗), ℓ = 0, 1, . . .}
exhibits linear convergence to zero. Furthermore, lim

ℓ→∞
Φ(ℓ) = Φ∗ and

lim
ℓ→∞

Θ(ℓ) = Θ∗(Φ∗).

▶ (60) implies that for any ℓ,

0 < (1− ε)/(1− C
(ℓ)
φ,1) < 1− ε̄ < 1. (61)
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Using an AC simulator to verify convergence

▶ We verify the convergence of the EMQV algorithm and analyze the
effect of recalibration and the choice of the state process on the
algorithm’s convergence

▶ We also compare EMQV with the soft actor-critic (SAC) algorithm
(Haarnoja et al. (2018)), which uses deep learning

▶ We choose 3 different levels of risk aversion:

λLow = ηenv, λMid = 103 × ηenv, λHigh = 104 × ηenv

▶ We specify AC model parameters

S0 q0 T (day) κenv ηenv σenv

100 5 × 105 1 2.5 × 10−7 2.5 × 10−6 30%

▶ Optimal parameters should be given by

φ∗
1 =

√
λσ2

envS
2
0/ηenv, θ∗1 = κenv, θ∗2 = φ∗

1ηenv+λS2
0σ

2
env/φ

∗
1 , θ∗3 = 0
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Training results of EMQV for low risk-aversion λLow
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Training results of EMQV for medium risk-aversion λMid
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Training results of EMQV for high risk-aversion λHigh
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Training results of EMQV with and without recalibration for λMid
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Learning paths of φ1 from sample and exploratory trajectories
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Performance gaps of EMQV and SAC

▶ We compare out-of-sample testing performance measured by QV-adjusted
PnL of the policy π learned by the algorithm

PnLπ := E[xπ
T ]− λE

[∫ T

0

(qπ
t dSπ

t )
2

]
▶ The performance gap (in basis points) between policy π and the optimal

one is

∆PnLπ :=
PnLπ − PnL∗

PnL∗ × 104

▶ Average performance gaps over 105 episodes

λLow λMid λHigh

∆PnLEMQV -7.490×10−4 -1.022×10−3 -3.075×10−4

∆PnLSAC -19.311 -169.754 -185.475
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Inventory processes of EMQV and SAC
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Performance in market simulation

▶ We train the EMQV algorithm on two market simulators built using
real data

1. HD: Uses historical limit order book and order flow data without any
model assumption

2. CST: Stochastic model of order book dynamics (Cont et al. (2010))

▶ An algorithm’s performance is measured by its improvement over
TWAP

▶ Let AC-EC denote the classical control approach
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Out-of-sample test results
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Observations & Discussion

▶ Empirically, EMQV demonstrates some performance advantages over
SAC

▶ The AC model is relatively simplistic and does not consider
potentially useful microstructural features

▶ SAC is developed without the AC model and can incorporate many
features but can be problematic to train

▶ EMQV is an easy-to-train algorithm that delivers significant
improvement over TWAP that is far more stable than that of SAC

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis



Introduction Classical AC Exploratory MQV RL Algorithm Theoretical Analysis Simulation Study Empirical Analysis Conclusions

Conclusions

▶ Our analytical solutions to the exploratory MQV problem under the
AC model provide natural parameterizations of the value function
and control policy for learning

▶ We introduce a recalibration step to the actor-critic algorithm which
facilitates convergence

▶ A finite-time error analysis shows our algorithm converges linearly to
the global optimum in the AC model given proper learning rate
choices

▶ Simulation and empirical studies demonstrate the algorithm’s
effectiveness
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