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Introduction

» In the execution problem, an agent aims to liquidate or acquire a
certain number of shares in a given time horizon

» To achieve optimal scheduling in a continuous-time setting, the
agent must choose a trading rate to balance the trade-off between

market impact and price uncertainty
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Model-based approach: a brief history

» Almgren and Chriss (2000) derive a strategy optimizing
variance-adjusted expected execution revenue under linear market
impacts

» This paved the way for extensions

> e.g. generalization of market impact assumptions, variations on price
evolution, etc.

» Reliance on model-based stochastic control
» model-based = model parameters are assumed to be known

» However, estimating market impact models through historical data is
difficult (Kyle and Obizhaeva (2018))
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An influx of (discrete-time) RL efforts

» Nevmyvaka et al. (2006) conducted a seminal investigation of RL
applied to the execution problem using Q-learning

> Ning et al. (2021) developed a double deep Q-learning method and
showcased its empirical performance on historical data

» Park and Van Roy (2015) proposed a method for simultaneous
execution and learning in a market impact model

> Hambly et al. (2021) applied a policy gradient method for the linear
quadratic regulator problem to the Almgren-Chriss (AC) framework

» All these papers are concerned with the discrete-time setting

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Problems with discrete-time RL

» Continuous state and action spaces inspire the use of neural
networks as approximators of the value function and control policy
» Requires delicate hyperparameter tuning
> Convergence issues
> Interpretation difficulties

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Expanding interest of continuous-time RL

» Execution is a high-frequency decision-making problem, making the
continuous-time setting natural for studying execution RL algorithms

» Wang et al. (2020) pioneered a continuous-time RL framework

» Wang and Zhou (2020) developed an actor-critic algorithm for
continuous-time mean-variance portfolio selection

» Algorithm is based off an analytically formed value function and
exploration distribution

» Compares favorably with a policy gradient algorithm that relies on
neural network approximations

» Developments are ever-growing

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Main contributions

» Offline actor-critic algorithm based on the continuous-time AC
model and the continuous-time RL framework of Wang et al. (2020)

» Main contributions are threefold
1. Novel perspective for actor-critic algorithm design in continuous-time
RL

2. Error analysis of the algorithm
3. Simulation and real-data study to demonstrate the algorithm’s nice

convergence behavior and out-of-sample performance
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Classical AC model in continuous time

> Task is to liquidate go > O shares within the time horizon [0, T]
» Trader's execution strategy is the control process v = (Vt)¢eo, 7]

> Inventory process under v is ¢¥ = (g )tcpo, 7] and satisfies
dgi =wvdt, t€[0,T], qo =qo

» Stock price §” = (5¢)tepo, 7] follows an arithmetic Brownian motion

(ABM) controlled by the strategy v through permanent impact function

k(v) = kv, where k > 0
dS; = k(ve)dt + 0SodWe, t€[0,T], Sy =S50
» Cash process of the trader under v evolves as
dx{ = —ve(Sf + g(ve))dt, te[0,T], x = xo

with temporary impact function g(v) = nv, where > 0
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Motivating the mean-quadratic variation (MQV) objective

» Almgren and Chriss (2000) do not use any information regarding the
stock price evolution after the start of trading

» The quadratic variation (QV) risk measure

E UOT(q:ds:f} —E [/OTa2sg(q:)2dt] (4)

captures the volatility path of the portfolio value process P{ = x{ + qf S¢

since
(dPY)* = (qt dS})? (5)

» Under the MQV objective, the stochastic control problem is
time-consistent and measures risk along the entire trading path (Forsyth
et al. (2012))
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Solution to classical continuous-time AC

» We have the dynamic optimization problem

,
AP [/ (—velSY +mve) = XS} (ar ) ) dt + hr(ay, ST) | af = 60, S = So

v e Ag(q0.50 0

where A > 0 measures risk aversion, Ao(qo, So) is the set of admissible
controls, and
0, ifg=0

hr(q,S) = . (6)
—00, otherwise

penalizes inventory not liquidated by time T
» Optimal value function and optimal trading rate function are

vi(t,q,S) = qsfq;(n+2anoth(K(T7t))), v(t, q,5) = —qKcoth(K(T —t)), (7)

262
Ao2Sy
n

where K =
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Solution to classical continuous-time AC

» Optimal inventory trajectory is thus

a sinh(K(T —1t))

q: —QOWa tel0,T] (8)

» Subbing (8) into (7), we obtain the optimal trading rate process

cosh(K(T —t))

=gk~ g0, T
ve =K =gk 0 e Th

; i el — @K
which shows tILmTyt = ~ (KT
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Towards an RL algorithm

» The three parameters of the AC model (i.e. k,n,0) are difficult to
estimate empirically (Kyle and Obizhaeva (2018))

» RL instead tries to learn the optimal policy by interacting with the
unknown environment through exploration

» The results obtained from formulating and solving the exploratory
MQV (EMQV) problem will form the basis for developing RL
algorithms

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Problem formulation

» To incorporate exploration, we introduce density function 7; to relax v; to
be a probability distribution at any time t

» Using argument from Wang et al. (2020), we obtain the exploratory
version of dynamics (1), (2) and (3) as

dai = [ vmv)dvet, te0.T) @ = (9)
R

dsf = R/Vﬂ't(lj)dl/dt—I—CfSoth, te[0,T], S; =S (10)
R

dx; :/fV(S;TJrny)m(y)dth, te[0,T], x3 =xo (11)
R

» Overall information gain from exploration is quantified with accumulative
Shannon differential entropy

H(m) = —/OT/Rm(V)Inm(V)dudt

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Problem Formulation

> Introducing temperature parameter ¢ > 0, we obtain the EMQV

formulation
.
sup [/ / (=u(ST +mw) — Ao?sB(al)? — ¢ne(v)) me(v)dvde + hr(aT s ST) ‘ o = a0, ST = so]
€ Agl0:50) R

(12)

» To solve the EMQV problem, we define the value function

VT (t,q,5) = E U / — ST + ) = A2 (aT)? — Chnmy (1)) mu(v)dvds + hr(aF $T)'qt —q, 57 75]
(13)

» The optimal value function is

V*(t,q,S)= sup V7(t,q,S)

e At(q,S)
» Solutions to
dgf =vidt. te[0,T], ¢ = qo, (14)
dST = kvl dt +0SdW,. t€[0,T], Sg =50 (15)

give sample trajectories of the inventory and stock price for an action
sequence {v],t € [0, T]} generated by the control policy 7

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Policy evaluation for a class of control policies

» Consider a class of feedback controls of the form
' (vit,q,5) = N(v | —qf (T —t),c), ¥(t,q,5) €0, T]xRxR,
where ¢ > 0 is constant and f(T — t) is a deterministic function®
satisfying the following conditions:

(i) f is continuous
(i) Iimf(T—t):oo

|||)f f(T —u)du=o00Vte0,T)

(iv) I|m f f(T —s)exp(— [ f(T — u)du)ds is finite

(v) f f2 T —s)exp(—=2 [ f(T — u)du)ds < oo Vt € [0, T)
i)

(v ||mf £2(T — s)exp(—2 [} f(T — u)du)ds = 0o

» The optimal feedback control distribution for the EMQV problem is in this
class

1Two example functions are coth(T — t) and 1/(T — t)
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Policy evaluation for a class of control policies

> Under ', the trader’s inventory evolves deterministically with dynamics
dat = —qi (T~ t)dt, &' = o,
which has the unique solution
' = e (= [T~ ). (16)
0
and, from condition (iii),
qr =0 (17)

» The stock price dynamics become

‘
dsT = —kqof (T — t)exp (—/ (T - u)du) dt + 0SdWe, ST =S
]

Proposition 3.1
The value function V™' is given by

v (t,q,5) = a5 + (cm/ﬁ— nc) (T-1)
g (g n /‘T(Afsg +0f(T = 5))exp (72/: F(T - u)du) ds)

for any (t,q,5) € [0, T] x R xR
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Optimal solution to the EMQV problem

» The optimal value function V*(t, g, S) satisfies the HJB equation

2¢2
0= wr+ T0ss — A?S2q> + sup (/((m5 Yo — S — i — (Imr(u))fr(u)dy) (18)
2 mweP(R) \/R
with terminal condition
w(T,q,S) = hr(q,S) (19)

Theorem 3.1
For ¢ > 0, (18) is equivalent to

2¢2 _ oy
0=we+2 Snwssf>\025§qz+w+an1 .
2 4n n

The solution to this PDE with terminal condition (19) is given by

2
w(t,9,5) = g5 — (s + 2mKcoth(K(T ~ 1)) + Iy /%C(T _), (20)
for any (t,q,S) € [0, T] x R x R, where K = MTZS‘? The maximizer in (18) is given by
s _ Kws +wg—S ¢\ _ _ _ <
(v t,q,S) —N(u — o 2y =N (v |—gKcoth(K(T —t)), o (21)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Optimal solution to the EMQV problem

Theorem 3.2

V*(t,q,S) = w(t,q,S) and the optimal feedback control is Gaussian with
density function given by 7*(v; t,q,S). Furthermore, the optimal value function
and optimal control of the EMQV problem converge to those of the problem
without exploration and entropy regularization as ¢ — 0.

» Similar to Wang and Zhou (2020), we can develop a policy improvement
theorem. That is, if we let

7(vit,q,5) =N (u

(22)

RVEFVE S ¢
27] 727/” )

we can show V7(t,q,S) > V™(t,q,S) for any admissible 7.

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Designing an RL algorithm

» Since we still need the AC model parameters, these analytical results
are not implementable

» Denote them as ©eny = (Kenv, Menv, Ue2nv)

» Assuming the environment is described by the AC model, we can
develop an actor-critic RL algorithm to directly learn the optimal

policy
» The algorithm iteratively applies a policy in the environment to
collect samples and then updates the policy

» The analytical results specify a natural parameterization of policy
and value function with a small number of parameters

» Convergence is guaranteed under certain conditions

» Neural network parameterizations are large and generally do not
guarantee convergence

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Parameterization of policy and value function

> Given the form of the optimal feedback control (21), consider the family of
distributional feedback controls

7T¢(V; t7 q, S) - N(V | —q801C°th(‘Pl(T - t))7 §<P2), (23)

which is parameterized by ® := (1, ¢2) for ¢1 > 0 and ¢ >0
» Calculating the integral in (16) yields

o _ _sinh(p1(T —t))
d: = qo sinh(p1 T) , te [07 T] (24)

» Applying Proposition 3.1, we obtain the value function of 7® as

&
V™'(t,9,5) = a5 + ¢ (Inv/27eCoz — memvip2 ) (T — )

2 2 2 2 2
q )‘Uenvso > < )‘Uenvso > SOI(T - t) >
- 2%e0v20 ) coth(er(T — ¢ -
> <"€env + ('ﬂenv‘Pl + o1 Cco (LPl( )) + | Nenvip1 o Sinhz(tpl(T — t))
(25)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Parameterization of policy and value function
» We wish to approximate v with

VO(t,q,S) = ¢S + g <|n(27re(<p2) (0 + 93)ﬁ) (T—1)
. o (26)

_ % <91 + Gzcoth(pr(T — t)) + 93%)

for any (t,q,S) € [0, T] x R x R, and © := (1,6,,603) € R®
> We want to approach the true parameter vector for the value function of 7®, which

IS
si@] [F % O [en
O (®) = |0(®)| = [0 w1 2 | |gen (27)
6;(¢) ('01 7Lsg UGZHV
Y1

> Any O, together with ®, implies an environment parameter ¢imp = (n;mp,nimp,aﬁ“p)
through
© = M(®)¢imp(©; ®), (28)

where M(®) is the matrix in (27), and

Yimp(©: @) = M(®) 7' (29)
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Martingale loss function for policy evaluation

> Jia and Zhou (2022ab) propose martingale loss function for policy iteration
> A feedback policy ©® of the form given by (23) has entropy

H(n®) = — /D;’JTO(V)M‘ITQ(V)dV = Iny/2meCp2

> By Theorem 1 of Jia and Zhou (2022b), the process M = (M{).cpo,7] is a martingale,
where

t
ME = V™" (t,q?, %) + / ( / Fenv (V)5 (V) dv — A2, S5 (a1 )’ +<In\/2weopz) du
0 R

With reny = —1/(S$ + env’) being execution revenue received from the AC environment
> We define the martingale loss function ML(©; ®) for fixed policy parameter ® as

ML(©;®):=E [/OT (Mge _ M;b,e)2 dt]

.
:]E/ <V6(T,q$,5$)fve(t,q?75?)
0

- 2
+/ (/ renv (V)8 (V) dv — Xo2,, S2(q2)? + Cln\/2ﬂ'er2) du> dt:|
t R

> Policy evaluation boils down to minimizing ML(©; ®) over ©
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Approximating the martingale loss function

> From (17), we deduce V®(T,q%,5%) =0
» We approximate ML(©; ®) by

N—1

ML©O; )~ E | ( - ve(t,-,qf;,sg"_’) + (T — t;)In\/27eC e,

i=0
+ Z (/ Fenv (v ( )Ydv — Aol Sa(ar ) )At)ZAt

» We use Gaussian-Hermite (GH) quadrature to approximate
/rem,(u)frt (v)dv = rt = Zw rem,(,u,t + \fo’?yS,H),
R

where pg’, = —qg?cplcoth(gol(T —t)), 0:1 = /Cp2, and WS are y&H are
quadrature weights and abscissas, respectively
» Moreover, we approximate
2
o Sagyar~ (8PF)", APY = riac+ ST (af  —af) +ap (S, —St)

J
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Approximating the martingale loss function

» We now approximate ML(©; ®) b

— 2
MLa(©; ) := E {NZI ( © L ¢(T — t;)Iny/2meCes + Z (r;}’At ~ A (AP;Y)) At:| i

i=0

where VP := VO(t, g7, S?)

» This leads to
9o, ML(©; ®) ~ 89, ML+ (©; d)

N—1
-E [2 > 0e, Ve ( VP + ¢(T — ti)Iny/27eCepr + Z (rt At — (Ap;’>2>> At:| ,

i=0
(30)
where for i =0,...,N —1,

D\2
de, V7 = -% (31)

D\2
90, Vi? = —(q;) coth(iy(T — 1)) — %(T - t), (32)

D2
oo vo =B _alTon) __Cerp (33)

2 sinh?(pi(T — t)) 2¢1

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Approximating the policy gradient

> Let G(®) := V”O(O, o, So) as it's given in (25). We can directly calculate

qg ’\Ugnvsg
— 2 | Nenvipr — /2 ) g(

VoG(®) = [g(plG(d))} - i ( 1 1 ” ) ) ’ (34)

; (7 (s

where
coth(¢1T) T 2. T2

= - >
g(e1) o1 sinh?(o1T)  sinh?(p1 T)tanh(p1 T) 3%

» Since (34) contains unknown environment parameters, we need to replace
them with their implied counterparts to approximate the policy gradient,

l.e.
2 o2 52 2
% (g A %imp%0 _q63
VoG(P) = Vo G(P;0) := 2 (meépl ©1 )g(tﬁl) @ |: 12 g(z)azIJr)eg :|
CT(ﬁfnimp) Tz ~ oo )
(36,37)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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The EMQV algorithm

> Start with initial guesses ©© and ¢

1. PE update: Update @) to 8® by gradient descent as

Empirical Analysis
000

09 =69 — 9y, MLA(©); &) /o)) Kk =1,2,3,

where l/a(el) is the learning rate for iteration ¢

2. PG update: Update policy parameters by gradient ascent as

S =0 4, (0D, 8Y) /0P, k=12,

where l/agf) is another learning rate

3. Recalibration (RC): To ensure the estimated value function moves in

lockstep with the policy update, we recalibrate O via

e(@+l) _ M(¢(Z+1))M(¢(e))7lé(@
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The EMQV algorithm

» Collection of samples from the environment: In iteration ¢, generate
multiple episodes by interacting with the environment to collect samples
In episode m and at t, = iAt, collect a sample (t;, qz m 5[ m b APZ ™)

i

using the control 7rt, =N{(-| Mr, 7(Ut Y2), where

1) = —qrmPcoth(p(T - 1)),  (07) = ¢l

Collect trajectories for the exploratory state process from the environment.

1. Collect exploratory execution revenue rﬁ’mAt by calculating trading

rate vj = S \[a 0 JGH, sending an order of size vjAt and
receiving revenue rem,(uj)At, doing this n times, and calculating
rﬁ’mAt = ﬁ > Wi reny (V) At

2. Collect quadratic variation APe’m by sending an order of size ug’)

observing Stm, updating thH = qt ™+ pgf)At, and calculating

tit1

AP™ = rfm At + ST (T~ ar™) +agm (ST - ST (39)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Algorithm 1: EMQV algorithm for the optimal execution problem.

Input: Environment Env, initial price Sp, initial inventory qg, execution horizon T, timestep At, risk-aversion
parameter ), temperature parameter , abscissas yoM, ..., y&" and weights wit, ... wSH of the GH
quadrature, number of training iterations L, number of episodes M;

Initialize ©(©) = (0(0) [2) ) 9(0)) and ¢(©) = (&,cgo),géo));

for training iterations [ =0,...,L do

for episodes m =0, ..., M do

for time steps i

s do
Calculate H(Z) = q[ m (l)coth( (T - 1)) and (aif]))z = ¢l

Calculate v; = ut, )+ fa([) GH send vjAt, and receive reny(v5);
Reset Env to t;;

end

Calculate ri™ = Tr i1 W e (1)

Send u< ), observe Sflj’, update qf,;':’ = qf‘m +p(f)At, and calculate APﬁ’m;
end

end

Policy evaluation:

Calculate 95, MLa(©); 6) = L S"M 9y MLA.(0); ()™ and
00 = 6 — 89, MLAL(O1; & )/ae) for k=1,2,3;

Policy gradlent . .

Calculate 9, G(¢1; 00 = LM 9 G(0); 8)(™ and update
e = 0l +0,6(000,60) /af) for k=1,2;

Recalibration:

Update ©(+1) = M(oU+D)M(o(D)-16();

end
Output: Learned policy ’/Td)(L)(I/ | t,q,5)=N(v| 7q¢gL)coth(w(1L)(T —t)), @;ﬁ“)

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis



Introduction Classical AC Exploratory MQV RL Algorithm Theoretical Analysis Simulation Study Empirical Analysis Conclusions
000000 0000 0000000 Q00000000 Oe0000000000 00000000 [e]e]e} (e]e]

Next step: convergence analysis for EMQV

» We will be analyzing convergence for the EMQV algorithm

» First, we will obtain useful properties of the exact martingale loss
function

» We will then analyze the convergence of exact PG, which will
motivate convergence analysis for EMQV

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Analytical formula of the martingale loss function

Lemma 5.1
The martingale loss function, its gradient and Hessian matrix are given by

ML(©; ®) = ~(®) + p(©; ®)TI(®)p(O; ®),
VoML(©; ®) = 2A(®)TI($)p(6; d),
VEML(O; d) = 2A(®)TI(D)A(P),

where (®) = TS (% = %) 2(0; ) = A(D)O + ben(®) with
B len = \950,53)
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Furthermore, ML(©*(®); ®) = 7(®) and Vo ML(©*(®); ®) = 0.
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Useful properties of the Hessian

> Let S(®) := A(P)TI(S)A(P), L(®) := 2||S(P)] o, and
p(®) = 2min(S5(P))

Lemma 5.2
The matrix S(®) is positive definite and

0 < Amin(S(®)) < Amax(S(®)) < [S(®)lloo- Thus, u(®) € (0, L(®)).

Conclusions
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» In the ensuing analysis, we explore how the gradient steps in PE and
PG influence the performance gap between our algorithm and exact

updates
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Convergence of the exact PG

» Denote the optimal policy parameters by
O = (p1,93), #1 =/ ASF/Nenvs 3 = 1/(20ens) (43)

o = o) 1 Vo 60 /ald). (44)

» In the exact PG update,

Lemma 5.3
For any fixed @, > 0, there exists a positive constant Le independent of ® such that for any o1, 1 > 0 and @2, ¢h > Py

—G(') < —G(P) — Vo G()T(®' — &) + L2—GH¢/ — o|3.

Lemma 5.4

For any fixed 0 < ¢ < $1 < 00, 0 < ¢, < $2 < 00 such that ¢* € Co := [, 9,] X [P1, 2], G(®) satisfies the local
Polyak-tojasiewicz ZPL) condition on ® € Co, i.e., there exists a positive constant jic independent of ® such that for any
® € Co,

21 - VoG(@)I > no(6(0") — 6())

Furthermore, we can always choose L¢ to be greater than jic.
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Estimate of the performance gap for exact PG

Theorem 5.1
For any fixed Co := [p,, p,] X [P1,Pa] with 0 < ¢, < ¢ < @1 <00 and 0 < p, < ¢3 < P2 < 00, and the exact
PG update scheme (44), if ®©) € Co and

B, G(®D) 8, G(01)) 9,,G(dD) 8,,G(d®)
o> max{ 2 6(00) 056000) 9560 056N _ (40 vyc(o®)  (s5)
P1—¥1 P =% P2 =¥ Pr P2
for any £ =0,1,..., then ) & Cq for all £, and the performance gap satisfies

6(0) = (o) < (1- 1) (6(6") - 6(0")),

where

¥ = e (209 - L) /(D)2 (46)
and Lg, g are positive constants in Lemma 5.3 and Lemma 5.4. If, in addition to (45),
o) > Lc/2, (47)
then
0< Y <pe/le <1, (48)

and hence the linear convergence of the exact PG iterations.
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Error analysis of one-step PE

Lemma 5.5
For ) and ©), after the one-step PE update

6 =0 — voML(O®; d1)/al")
with off) > L(®(9)/2, we have
[6©) — *(6)], < Aal?, @) [0 — &% (@M),,

where

Empirical Analysis
o]

2Amax(S(P)) /g — 1 if L(®)/2 < ag < Amax(S(P)) + Amin(S(P)),

ez = {1 — Dl S@)) a0 0 > Amad S(®)) + Amin(S(®)).

We also have
0 < A(awg,®) <1—ep forany ® € Co,

where ep € (0,1) is a constant independent of ® but dependent of the chosen Ce.
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Error analysis of one-step PG

Lemma 5.6
Suppose ©*, o) ¢ Co. After one-step PG (38) using the approximate policy
gradient Vo G(®); 61)) if

o > max{ cre(®), Vo G(01); 81)), L¢ /2},
we have ®“™) € Cy and
6(07)-6(0“ ™M) < (1= ) (6(07) = 6(617))+C, 210 () |3+C, 3481 (0 o,

where AOV)(d9)) .= 6 — % (), Cq(f:)l is defined in (46) and satisfies

(48), and C, > and C, 3 are positive constants independent of £.
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Error analysis of RC

Lemma 5.7
After the RC step, if

alf) > maX{CRC(Ea o(1,8), cpe(v), Vo (01, é(“))}
and o
/\(049 3 ¢(e))ﬂ{§§z)go) - (1 - E)Il{égz)
A (1- = Aaff, o))

crele, ®0,61)) = % 5., G(09,6)

for any fixed € € (0,ep), we have
[©¢“F)) — e (e[, < d(£)[|0 — &% (1),

where

d(¢) = max{ 1, go(lHl)/cp(le), p&e)/p(lzﬂ) }/\((1‘(95)7 o) € (0,1—¢).
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Error bound for the performance gap of the EMQV algorithm

Theorem 5.2
Suppose d*, ®(©) ¢ Cy and assume the following condition is satisfied for { = 0,1, .. ..
Condition 1: af) > L(#()/2, and for any fixed 0 < & < e,

o) > max{cPG(W), VoG (00, 8®)), Ls/2, cre(e, 9, é“’))}.

Then () € Cy for all £ and
G(®*) = G(&) < (G(9*) = G(SD))E(£+1)+ C, 2(A80)* (E ® D?)(£) + C 3A00(E ® D)(0),
where

o—1
E(0) =[] (1_ cj,‘f;*)), 0=0,1,....041,
=0

-1
D(0) = Aay, o) [] d(0) € (0,1~ <)),
=0

with (E ® D)(¢) = X4 _o E({ — 0)D(e) and A = [©©) — ©%()|.
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Interpretation of the performance gap

» The upper bound on the performance gap is the sum of three parts
» The first is due to PG error, which converges to 0
» The last two are due to PE error, and the summands coverge to 0

» However, the PE error accumulates with respect to £

» To obtain convergence of the algorithm, we must ensure aff) is also

small enough to overcome the cumulative impact of PE error
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Convergence of the EMQV algorithm

Theorem 5.3

Assume the following condition holds in addition to Condition 1.
Condition 2: For any fixed € and € such that 0 < € < e < ep < 1,

_ ¢+ (e — Be,zlc
a(j) > CCVG(Evs) = K K (M_ )1{M6>Ba,5LG}7 (60)

e,€

where Bz := (¢ —&)/(1 — &) € (0,1).
Then, the sequence of performance gaps {G(®)) — G(¢*), £=0,1,...}
exhibits linear convergence to zero. Furthermore, lim &) = &* and

£— 00
lim @) = ©*(¢*).
£— 00
> (60) implies that for any ¢,
0<(l-e)/1-c¥)<1-e<1. (61)
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Using an AC simulator to verify convergence

» We verify the convergence of the EMQV algorithm and analyze the
effect of recalibration and the choice of the state process on the
algorithm's convergence

> We also compare EMQV with the soft actor-critic (SAC) algorithm
(Haarnoja et al. (2018)), which uses deep learning
» We choose 3 different levels of risk aversion:

)\LOW = Denv, AMid — 103 X Tenvs )\High _ 104 X Nenv

» We specify AC model parameters

SO do T (day) Kenv Tenv Oenv
100 5 x 10° 1 25 x 1077 25 x 107° 30%

» Optimal parameters should be given by

90?[( = )‘Ugnvsg/nenw 916 = Renv; 6; = <anenv+)\530e2nv/¢fv 9; =0
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Training results of EMQV for medium risk-aversion \Mi
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Training results of EMQV for high risk-aversion \Hieh
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Learning paths of ¢; from sample and exploratory trajectories
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Performance gaps of EMQV and SAC

» We compare out-of-sample testing performance measured by QV-adjusted
PnL of the policy 7 learned by the algorithm

poi = epep) s [ [ T(qfdszﬂ

» The performance gap (in basis points) between policy m and the optimal

one is PrL™ — PnL*
m . Fn —Fn 4
APnL™ = el x 10

» Average performance gaps over 10° episodes

)\Low )\Mid )\High
APnLEM®Y 7490%x107*% -1.022x10°3 -3.075x10°*
APnLSAC -19.311 -169.754 -185.475
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Inventory processes of EMQV and SAC
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Performance in market simulation

» We train the EMQV algorithm on two market simulators built using
real data

1. HD: Uses historical limit order book and order flow data without any
model assumption
2. CST: Stochastic model of order book dynamics (Cont et al. (2010))

» An algorithm's performance is measured by its improvement over
TWAP

» Let AC-EC denote the classical control approach

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Out-of-sample test results
AAPL  BMY  CVX DIS FB MSFT PG
Aow
APIL®MQV (HD)  —0.020 0.017  0.015 —0.032  0.046 —0.019  0.001
(0.01) (0.10) (0.03)  (0.02) (0.11) (0.01) (0.05)
APILFMQY (CST)  —0.011  —0.000 —0.003 —0.000 —0.010  —0.005  0.000
0.01)  (0.00)  (0.00)  (0.00)  (0.01) (0.00)  (0.00)
APnLSAC (HD) —1.16E3 —4.958 —12.566 —6.212 —790.351 —1.884  —2.094
(5655)  (26.90) (2219) (1627)  (69.85)  (15.68)  (14.71)
APLSAC (CST)  —120.740 2752 —2.766 —2.691 —297.374 —1516  —1.895
(3458)  (26.68) (2232) (1626) (4826)  (1560)  (14.70)
APLACEC —0.001  —0000  0.000 —0.000 —0.001 —0.001 —0.000
(0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)  (0.00)
i
APIL™MQV (HD)  15.369 2.339 1.766 0.506 7.994 5.202 0.281
(283)  (064)  (031)  (029)  (L77) (088)  (0.09)
APILFMQY (CST)  14.661 0161 1689 0023  18.954  7.445 0894
(231)  (003)  (029)  (0.01)  (3.74) (129)  (0.33)
APILSAC (HD)  —1.25E5 —0.367 —44855 36189 —9.80E3 —27.604 —0.095
(5813.98) (20.31)  (35.70)  (26.52) (1192.00) (20.10)  (14.73)
APILSAC (CST)  —6.91E3  4.260  7.360  1.397 —9.20E3  7.751  1.169
(772.96)  (27.31)  (2254) (16.36) (1083.18) (22.34)  (14.72)
APnLACEC 6.459 0.339 0212 0.054 12.522 2,611 0.043
(121)  (011)  (0.04)  (0.02)  (3.16) (0.53)  (0.02)
\High
APIL*MQV (HD)  102.285  59.241  38.113 19.704  75.322 85.983  15.829
(58.73)  (1226)  (378)  (228)  (19.02)  (37.38)  (1.37)
APLPMQV (CST)  164.837 2111 27.062 0476  241.802 92267  7.842
(53.06)  (0.31)  (218)  (0.05)  (64.09)  (24.48)  (0.59)
APILSAC (HD)  —68.872  27.832 —79.031 —44397 -517.230  3.143  —33.383
(306.17)  (66.95) (3293) (21.61) (500.27) (127.99)  (16.25)
APILSAC (CST)  —306.266 107.468 —22.186 2302 215508 245.135 15083
(278.97)  (62.99) (3161) (20.14) (390.73)  (130.87)  (15.86)
APnLACEC —905.742  25.328 20470  6.731  —529.620 -203.392 4.885
(121.44)  (554)  (180)  (0.76)  (160.46) (59.75)  (0.70)
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Observations & Discussion

» Empirically, EMQV demonstrates some performance advantages over
SAC

» The AC model is relatively simplistic and does not consider
potentially useful microstructural features

» SAC is developed without the AC model and can incorporate many
features but can be problematic to train

» EMQV is an easy-to-train algorithm that delivers significant
improvement over TWAP that is far more stable than that of SAC

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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Conclusions

» Our analytical solutions to the exploratory MQV problem under the
AC model provide natural parameterizations of the value function
and control policy for learning

» We introduce a recalibration step to the actor-critic algorithm which
facilitates convergence

» A finite-time error analysis shows our algorithm converges linearly to
the global optimum in the AC model given proper learning rate
choices

» Simulation and empirical studies demonstrate the algorithm'’s
effectiveness

Reinforcement Learning for Continuous-Time Optimal Execution: Actor-Critic Algorithm and Error Analysis
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